视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
codeforcesRound#258(div2)C解题报告_html/css
2020-11-27 15:57:15 责编:小采
文档


C. Predict Outcome of the Game

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

There are n games in a football tournament. Three teams are participating in it. Currently k games had already been played.

You are an avid football fan, but recently you missed the whole k games. Fortunately, you remember a guess of your friend for these kgames. Your friend did not tell exact number of wins of each team, instead he thought that absolute difference between number of wins of first and second team will be d1 and that of between second and third team will be d2.

You don't want any of team win the tournament, that is each team should have the same number of wins after n games. That's why you want to know: does there exist a valid tournament satisfying the friend's guess such that no team will win this tournament?

Note that outcome of a match can not be a draw, it has to be either win or loss.

Input

The first line of the input contains a single integer corresponding to number of test cases t (1?≤?t?≤?105).

Each of the next t lines will contain four space-separated integers n,?k,?d1,?d2 (1?≤?n?≤?1012; 0?≤?k?≤?n; 0?≤?d1,?d2?≤?k) ? data for the current test case.

Output

For each test case, output a single line containing either "yes" if it is possible to have no winner of tournament, or "no" otherwise (without quotes).

Sample test(s)

input

53 0 0 03 3 0 06 4 1 06 3 3 03 3 3 2

output

yesyesyesnono

Note

Sample 1. There has not been any match up to now (k?=?0,?d1?=?0,?d2?=?0). If there will be three matches (1-2, 2-3, 3-1) and each team wins once, then at the end each team will have 1 win.

Sample 2. You missed all the games (k?=?3). As d1?=?0 and d2?=?0, and there is a way to play three games with no winner of tournament (described in the previous sample), the answer is "yes".

Sample 3. You missed 4 matches, and d1?=?1,?d2?=?0. These four matches can be: 1-2 (win 2), 1-3 (win 3), 1-2 (win 1), 1-3 (win 1). Currently the first team has 2 wins, the second team has 1 win, the third team has 1 win. Two remaining matches can be: 1-2 (win 2), 1-3 (win 3). In the end all the teams have equal number of wins (2 wins).

题目大意:

有n场比赛,你错过了k场,然后再错过的k长中,一队与二队的胜利差值为d1,二队与三队的胜利差值为d2。如若有可能,三支队伍获胜次数都一样,则输出yes,否则输出no

解法:

比较有趣且复杂的模拟题,我们可以想象成三个柱子,已知第一个柱子跟第二个柱子的高度差的绝对值,第二个柱子跟第三个柱子高度差的绝对值,现在还有n-k个砖(1高度),要求使得三个柱子高度一样。

首先,给了d1和d2,我们可以枚举一下有那几种基本情况:

1. d1, 0, d2;

2. 0, d1, d1+d2;

3. 0, d2, d1+d2;

4. 0, d1, d1-d2;

5. 0, d2, d2-d1;

其中4和5这两种情况,取决于d1-d2是否为正数,其实两种是一种情况=_=#。

然后,根据这5种情况,对于每一种情况,x,y,z都必须 >= 0,且 x + y + z <= k && (k - x - y - z) % 3 == 0。 这里我们是为了保证我们枚举的情况是否符合基本要求:三个队伍的比赛次数为k。

接下来,我们需要保证的是,(n-k)%3 == 0 && n/3 >= x, y, z)。

代码:

#include #include #define LL long longusing namespace std;LL n, k, d1, d2;bool check(LL x, LL y, LL z) {	if (x < 0 || y < 0 || z < 0) return false;	if (x + y + z > k) return false;	if ((k-(x+y+z))%3 != 0) return false;	LL tmp = x+y+z+(n-k);	LL dv = tmp/3;	LL md = tmp%3;	if (md == 0 && x <= dv && y <= dv && z <= dv)	return true;	else	return false;}void solve() {	cin >> n >> k >> d1 >> d2;	if (check(d1, 0, d2))	printf("yes\n");	else if (check(0, d1, d1+d2))	printf("yes\n");	else if (check(0, d2, d1+d2))	printf("yes\n");	else if (check(0, d1, d1-d2))	printf("yes\n");	else if (check(0, d2, d2-d1))	printf("yes\n");	else	printf("no\n");}int main() {	int tcase;	cin >> tcase;	while (tcase--) {	solve();	}}

下载本文
显示全文
专题