视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
CodeforcesRound#275(Div.2)ACountexample_html/css
2020-11-27 15:56:56 责编:小采
文档

题目链接:Counterexample



Counterexample

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Your friend has recently learned about coprime numbers. A pair of numbers {a,?b} is called coprime if the maximum number that divides both a and b is equal to one.

Your friend often comes up with different statements. He has recently supposed that if the pair (a,?b) is coprime and the pair (b,?c) is coprime, then the pair (a,?c) is coprime.

You want to find a counterexample for your friend's statement. Therefore, your task is to find three distinct numbers (a,?b,?c), for which the statement is false, and the numbers meet the condition l?≤?a?

More specifically, you need to find three numbers (a,?b,?c), such that l?≤?a?

Input

The single line contains two positive space-separated integers l, r (1?≤?l?≤?r?≤?1018; r?-?l?≤?50).

Output

Print three positive space-separated integers a, b, c ? three distinct numbers (a,?b,?c) that form the counterexample. If there are several solutions, you are allowed to print any of them. The numbers must be printed in ascending order.

If the counterexample does not exist, print the single number -1.

Sample test(s)

input

2 4

output

2 3 4

input

10 11

output

-1

input

900000000000000009 900000000000000029

output

900000000000000009 900000000000000010 900000000000000021

Note

In the first sample pair (2,?4) is not coprime and pairs (2,?3) and (3,?4) are.

In the second sample you cannot form a group of three distinct integers, so the answer is -1.

In the third sample it is easy to see that numbers 900000000000000009 and 900000000000000021 are divisible by three.






大致题意:给定l和r,找出满足条件 l?≤?a?


解题思路:暴力枚举。枚举所有的情况,对每个情况进行判断。这种做法的前提是数据不大,数据要是大了,就不能这么直接暴力了。





AC代码:

#include #include #include #include #include #include #include #include #include #include #include #include using namespace std;#define INF 0x7fffffff#define LL long longLL (LL a, LL b){ if(!b) return a; return (b, a%b);}int main(){ #ifdef sxk freopen("in.txt","r",stdin); #endif LL l,r,a,b,c; while(scanf("%lld%lld",&l,&r)!=EOF) { int flag = 0; for(LL i=l; i<=r; i++){ for(LL j=i+1; j<=r; j++){ for(LL k=j+1; k<=r; k++){ if((i, j)==1 && (j, k)==1 && (i, k)!=1) { printf("%lld %lld %lld\n", i, j, k); flag = 1; break; } } if(flag) break; } if(flag) break; } if(!flag) printf("%d\n", -1); } return 0;}

下载本文
显示全文
专题