视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
CodeforcesRound#256(Div.2)D二分答案_html/css
2020-11-27 15:54:11 责编:小采
文档


D. Multiplication Table

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Bizon the Champion isn't just charming, he also is very smart.

While some of us were learning the multiplication table, Bizon the Champion had fun in his own manner. Bizon the Champion painted ann?×?m multiplication table, where the element on the intersection of the i-th row and j-th column equals i·j (the rows and columns of the table are numbered starting from 1). Then he was asked: what number in the table is the k-th largest number? Bizon the Champion always answered correctly and immediately. Can you repeat his success?

Consider the given multiplication table. If you write out all n·m numbers from the table in the non-decreasing order, then the k-th number you write out is called the k-th largest number.

Input

The single line contains integers n, m and k (1?≤?n,?m?≤?5·105; 1?≤?k?≤?n·m).

Output

Print the k-th largest number in a n?×?m multiplication table.

Sample test(s)

input

2 2 2

output

input

2 3 4

output

input

1 10 5

output

Note

A 2?×?3 multiplication table looks like this:

1 2 32 4 6


题解

题目意思是,从一个n*m的乘法表(不要问我乘法表是什么)中选出第k小数(相同的数字会计算多次)。

比如样例 2 3 4

乘法表为

1 2 3

2 3 4

非减序列是:1, 2, 2, 3, 3, 4。第4个数字是3,所以输出3。

一开始我想到的是搜索,从n*m开始搜索,后来发现状态实在太多而且即便是搜索,时间复杂度是O(N * M)。

正确的解法是二分。二分答案(边界是[1, n * m]),然后在乘法表中去找比他小的数。因为乘法表是一个有规律的数表,所以针对每一列直接O(1)计算即可,总共计算N次。

总的时间复杂度是O(N * 2 * log(N))。

代码示例

/*****************************************************************************# COPYRIGHT NOTICE# Copyright (c) 2014 All rights reserved# ----Stay Hungry Stay Foolish----## @author :Shen# @name :D# @file :D.cpp# @date :2014/07/17 22:47# @algorithm :Binary Search******************************************************************************///#pragma GCC optimize ("O2")//#pragma comment(linker, "/STACK:1024000000,1024000000")#include using namespace std;templateinline bool updateMin(T& a, T b){ return a > b ? a = b, 1: 0; }templateinline bool updateMax(T& a, T b){ return a < b ? a = b, 1: 0; }typedef long long int;int n, m, k;bool check(int x){ int res = 0; for (int i = 1; i <= n; i++) { int tmp = min(i * m, x); res += tmp / i; } return res < k;}// 从小往大 计数,第k个int BinarySearch(int l, int r){ while (l < r) { int mid = (l + r) / 2; //cout << l << " " << mid << " " << r << endl; //cout << "check result: " << check(mid); if (check(mid)) l = mid + 1; else r = mid; //system("pause"); } return r;}int main(){ cin >> n >> m >> k; int Right = n * m, Left = 1; int ans = BinarySearch(Left, Right); cout << ans; return 0;}

下载本文
显示全文
专题