视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
canvas的图片处理
2020-11-27 15:27:28 责编:小采
文档
Canvas 通过 JavaScript 来绘制 2D图形。Canvas 是逐像素进行渲染的。在canvas 中,一旦图形被绘制完成,它就不会继续得到浏览器的关注。如果其位置发生变化,那么整个场景也需要重新绘制,包括任何或许已被图形覆盖的对象。

canvas对像素点实现基本的处理操作

// 获取像素点数据
var canvas = document.getElementById('CanvasElt');
var ctx = canvas.getContext('2d');
// 获取canvas中的像素信息,
//x 开始复制的左上角位置的 x 坐标。
//y 开始复制的左上角位置的 y 坐标。
//width 将要复制的矩形区域的宽度。
//heigh将要复制的矩形区域的高度。
var canvasData = ctx.getImageData(x, y, canvas.width, canvas.height);
// 写入像素信息
ctx.putImageData(canvasData, 0, 0);
获取到的canvasData对象包含下列成员,其中的data数组结构大概是这样的,一行一行存,然后一个列点一个列点存,每个点占4个下标,分别是RGBA呗,则对于坐标(x,y)(这里的y是下方正向),RGBA分别是data[(ywidth+x)4],data[(ywidth+x)4+1],data[(ywidth+x)4+2],data[(ywidth+x)4+3]。 能够获取到像素点,就能对像素点进行操作,最简单的就是灰度处理了,灰度处理有很多种方式最简单的方法就是把每个相位的r,g,b相加取平均数,再分别赋给r,g,b。
//灰度处理
function gray() {

var imageData = ctx1.getImageData(0, 0, canvas1.width, canvas1.height);
for(var i = 0; i < imageData.data.length; i += 4) {
var avg = (imageData.data[i] + imageData.data[i + 1] + imageData.data[i + 2]) / 3;
 imageData.data[i] = avg; // red
 imageData.data[i + 1] = avg; // green
 imageData.data[i + 2] = avg; // blue
 imageData.data[i + 3] = 255; //alpha
}
ctx1.putImageData(imageData, 0, 0);

}
像素取反:255 减去对应rgb的值,再赋值给原来的rgb;亮度调节:原来的rgb值随机的加减一个相同的随机数。那么想得到对比度变化的图片,或者模糊图片呢? 卷积核: 图片处理领域最常用的就是卷积核,所谓的矩阵的卷积,就是如下图显示的那样,当计算红色框中的数值的时候,分别先提取周围绿框中8个数字,然后与施加的那个矩阵中对应位置相乘,然后把各个乘积加在一起,就得到了最终的值了。
?
比如: (40 x 0)+(42 x 1)+(46 x 0)+ (46 x 0)+(50 x 0)+(55 x 0)+ (52 x 0)+(56 x 0)+(58 x 0)= 42 那怎么就能得到模糊的图片呢?图片的像素点和[1,1,1,1,1,1,1,1,1]的矩阵求卷积核,此时的像素点可能超过了255;所以再除以一个基数8;得到的图片就是加了模糊滤镜的图片;对比度呢,就是1.提高白色画面的亮度;2.让黑色更黑,降低最低亮度;可以求[0,0,0,0,3,0,0,0,0]的卷积核,同样的有可能超过255,再减去一个适合的基数150; 现在需要一个卷积核的函数: 函数第一个参数是 canvas上的 imageData 对象 第二个参数是传入矩阵所对应的数组,如果是下面这样的矩阵 a b c d e f g h i 则传入第二个的参数应为 [a,b,c,d,e,f,g,h,i] 第三个参数是除数因子。 第四个参数就是偏移量。
function ConvolutionMatrix(input, m, pisor, offset) {

var output =document.createElement("canvas").getContext('2d').createImageData(input);
var w = input.width,
 h = input.height;
var iD = input.data,
 oD = output.data;
for(var y = 1; y < h - 1; y += 1) {
 for(var x = 1; x < w - 1; x += 1) {
 for(var c = 0; c < 3; c += 1) {
 var i = (y * w + x) * 4 + c;
 // 卷积核计算
 oD[i] = offset +(m[0] * iD[i - w * 4 - 4] + m[1] * iD[i - w * 4] + m[2] * iD[i - w * 4 + 4] +m[3] * iD[i - 4] + m[4] * iD[i] + m[5] * iD[i + 4] +m[6] * iD[i + w * 4 - 4] + m[7] * iD[i + w * 4] + m[8] * iD[i + w * 4 + 4]) /pisor;
 }
 oD[(y * w + x) * 4 + 3] = 255; // 设置透明度为不透明
 }
}
return output;

}
//模糊处理
function mohu(){

var imageData = ctx1.getImageData(0, 0, canvas1.width, canvas1.height);
var m = [1,1,1,1,1,1,1,1,1];
var output = ConvolutionMatrix(imageData, m, 10,0);
ctx1.putImageData(output,0,0);

}

//对比度处理
function level(){

var imageData = ctx1.getImageData(0, 0, canvas1.width, canvas1.height);
var m = [0,0,0,0,3,0,0,0,0];
var output = ConvolutionMatrix(imageData, m, 1,-150);
ctx1.putImageData(output,0,0);

}

图片也可以有你想要的数据

既然图片每个像素都是由RGBA四个元素构成,单纯以图片来说用getImageData解析出来的只是一大堆你不必需要知道的数据,那么我们是不是可以把特定的色值看成我们自己的数据呢?
比如:在一张图片中,我们想把(r:255,g:255:b:255,a:255)白色像素找出来,可以通过getImageData来获取图片的数据,通过检索每个像素的数据是不是对应的rgba,把它们提取出来,再根据图片的宽度和高度,就可以计算出每个白色像素的位置信息,这些信息就是你想要提取的数据。

图片也需要做的好遍历些

在上一步中,我们已经知道了图片中特定元素获取相关位置信息的操作,但是图片是一个很普通的图片的话,你就需要遍历imageData中每个信息,有没有更好的方式减少遍历呢?
答案是:图片默认为黑色(r:0,g:0,b:0,a:0)就可以了,但不一定只有一个答案,或许也会有其他好的方法,但原理应该是一样的。
通过遍历每个像素的r,如果r!=0再去遍历这个像素的剩下的g,b,a,这一步比上一步剩下了无用的遍历,这一步中最重要的就是背景最好是黑色,因为黑色是全零状态,好计算。

还有没有更好的优化?

除了上述两步外,所用到的图片太大,也会导致遍历更多,而且我们只关心的是提取数据,而不关心他的大小,最终数据是我们想要的就行,那么我们可以把原图可以按比例缩放几倍,利用新的图片获取的数据最后在乘以相应的倍数,所得的就是我们想要的数据了。

相关推荐:

Canvas处理图片的方法

怎样用canvas实现小球和鼠标的互动

JavaScript+html5 canvas实现图片上画超链接的示例代码

下载本文
显示全文
专题