视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
.NET开发人员关于ML.NET的入门学习
2020-11-27 22:34:34 责编:小采
文档


ML.NET一直在微软的研究部门的工作。这些创新已经用于他们自己的产品,如Windows Defender,Microsoft Office(Powerpoint设计理念,Excel图表推荐),Azure机器学习,PowerBI。 ML.NET旨在提供终端工作流程,以便在机器学习(预处理,特征工程,建模,评估和操作)的各个步骤中将ML用于.NET应用程序。

ML.NET 1.0提供以下关键组件:数据表示机器学习任务(分类,回归,异常检测等)数据特征工程

机器学习模型应该让分析师的生活更轻松,现在甚至可以构建这些模型,因为新框架的设计考虑了AutoML。除了通常的机器学习任务外,ML.NET还支持AutoML。

对于机器学习初学者,Microsoft开发人员建议从Visual Studio中的ML.NET模型构建器和任何平台上的ML.NET CLI开始。对于可以随时构建模型的场景,AutoML API也非常方便。

使用ML.NET模型构建器,只需右键单击即可向应用程序添加机器学习。

在命令行使用ML.NET

还引入了另一个工具ML.NET CLI(命令行工具),它允许使用AutoML和ML.NET生成ML.NET模型。ML.NET CLI快速遍历特定ML任务的数据集(目前支持回归和分类)并生成最佳模型。

CLI除了生成最佳模型外,还允许用户为最佳性能模型生成模型训练和 消费模型代码。

ML.NET CLI是跨平台的,是.NET CLI 的全局工具。Visual Studio扩展ML.NET Model Builder 还使用ML.NET CLI提供模型构建器功能。

安装ML.NET CLI:

dotnet tool install -g mlnet 

这是使用回归预测出租车票价的代码

加载数据集

IDataView trainingDataView = mlContext.Data.LoadFromTextFile(TrainDataPath, hasHeader: true); 
IDataView testDataView = mlContext.Data.LoadFromTextFile(TestDataPath, hasHeader: true); 

运行AutoML二进制分类

ExperimentResult experimentResult = mlContext.Auto().CreateRegressionExperiment(ExperimentTime).Execute(trainingDataView, LabelColumnName, progressHandler: new RegressionExperimentProgressHandler());

模型评估

ITransformer model = experimentResult.BestRun.Model; 

并使用测试数据集评估其质量(taxi-fare-test.csv)。

Regression.Evaluate() 计算已知票价与模型预测值之间的差异,以生成各种指标。

var predictions = trainedModel.Transform(testDataView); 
var metrics = mlContext.Regression.Evaluate(predictions,scoreColumnName:“Score”);

创建预测引擎

var predEngine = mlContext.Model.CreatePredictionEngine<TaxiTrip, TaxiTripFarePrediction>(model);

计算分数

var predictedResult = predEngine.Predict(taxiTripSample); 

上面是使用Visual Studio内部的模型构建器以及CLI命令测试AutoML,还有一个API可以在.Net应用程序中使用它,使用非常简单,添加[ Microsoft.ML.AutoML ] nuget包到项目中就可以使用API 进行工作

ML.Net示例仓库中有一整套示例。可以重用了Common文件夹中的一些类来通过API使用AutoML 。

下载本文
显示全文
专题