视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
2016年浙江省高考数学试卷(文科)
2025-09-24 00:19:09 责编:小OO
文档
2016年浙江省高考数学试卷(文科)

 

一、选择题

1.(5分)(2016•浙江)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁UP)∪Q=(  )

A.{1}    B.{3,5}    C.{1,2,4,6}    D.{1,2,3,4,5}

2.(5分)(2016•浙江)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则(  )

A.m∥l    B.m∥n    C.n⊥l    D.m⊥n

3.(5分)(2016•浙江)函数y=sinx2的图象是(  )

A.    B.    C.    D.

4.(5分)(2016•浙江)若平面区域,夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是(  )

A.    B.    C.    D.

5.(5分)(2016•浙江)已知a,b>0且a≠1,b≠1,若logab>1,则(  )

A.(a﹣1)(b﹣1)<0    B.(a﹣1)(a﹣b)>0    C.(b﹣1)(b﹣a)<0    D.(b﹣1)(b﹣a)>0

6.(5分)(2016•浙江)已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的(  )

A.充分不必要条件    B.必要不充分条件

C.充分必要条件    D.既不充分也不必要条件

7.(5分)(2016•浙江)已知函数f(x)满足:f(x)≥|x|且f(x)≥2x,x∈R.(  )

A.若f(a)≤|b|,则a≤b    B.若f(a)≤2b,则a≤b

C.若f(a)≥|b|,则a≥b    D.若f(a)≥2b,则a≥b

8.(5分)(2016•浙江)如图,点列{An}、{Bn}分别在某锐角的两边上,且|AnAn+1|=|An+1An+2|,An≠An+1,n∈N*,|BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1,n∈N*,(P≠Q表示点P与Q不重合)若dn=|AnBn|,Sn为△AnBnBn+1的面积,则(  )

A.{Sn}是等差数列    B.{Sn2}是等差数列

C.{dn}是等差数列    D.{dn2}是等差数列

 

二、填空题

9.(6分)(2016•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是      cm2,体积是      cm3.

10.(6分)(2016•浙江)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是      ,半径是      .

11.(6分)(2016•浙江)已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=      ,b=      .

12.(6分)(2016•浙江)设函数f(x)=x3+3x2+1,已知a≠0,且f(x)﹣f(a)=(x﹣b)(x﹣a)2,x∈R,则实数a=      ,b=      .

13.(4分)(2016•浙江)设双曲线x2﹣=1的左、右焦点分别为F1、F2,若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是      .

14.(4分)(2016•浙江)如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°,沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是      .

15.(4分)(2016•浙江)已知平面向量,,||=1,||=2,=1,若为平面单位向量,则||+||的最大值是      .

 

三、解答题

16.(14分)(2016•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.

(1)证明:A=2B;

(2)若cosB=,求cosC的值.

17.(15分)(2016•浙江)设数列{an}的前n项和为Sn,已知S2=4,an+1=2Sn+1,n∈N*.

(Ⅰ)求通项公式an;

(Ⅱ)求数列{|an﹣n﹣2|}的前n项和.

18.(15分)(2016•浙江)如图,在三棱台ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.

(Ⅰ)求证:BF⊥平面ACFD;

(Ⅱ)求直线BD与平面ACFD所成角的余弦值.

19.(15分)(2016•浙江)如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|﹣1,

(Ⅰ)求p的值;

(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.

20.(15分)(2016•浙江)设函数f(x)=x3+,x∈[0,1],证明:

(Ⅰ)f(x)≥1﹣x+x2

(Ⅱ)<f(x)≤.

 

2016年浙江省高考数学试卷(文科)

参与试题解析

 

一、选择题

1.(5分)(2016•浙江)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁UP)∪Q=(  )

A.{1}    B.{3,5}    C.{1,2,4,6}    D.{1,2,3,4,5}

【解答】解:∁UP={2,4,6},

(∁UP)∪Q={2,4,6}∪{1,2,4}={1,2,4,6}.

故选C.

 

2.(5分)(2016•浙江)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则(  )

A.m∥l    B.m∥n    C.n⊥l    D.m⊥n

【解答】解:∵互相垂直的平面α,β交于直线l,直线m,n满足m∥α,

∴m∥β或m⊂β或m⊥β,l⊂β,

∵n⊥β,

∴n⊥l.

故选:C.

 

3.(5分)(2016•浙江)函数y=sinx2的图象是(  )

A.    B.    C.    D.

【解答】解:∵sin(﹣x)2=sinx2,

∴函数y=sinx2是偶函数,即函数的图象关于y轴对称,排除A,C;

由y=sinx2=0,

则x2=kπ,k≥0,

则x=±,k≥0,

故函数有无穷多个零点,排除B,

故选:D

 

4.(5分)(2016•浙江)若平面区域,夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是(  )

A.    B.    C.    D.

【解答】解:作出平面区域如图所示:

∴当直线y=x+b分别经过A,B时,平行线间的距离相等.

联立方程组,解得A(2,1),

联立方程组,解得B(1,2).

两条平行线分别为y=x﹣1,y=x+1,即x﹣y﹣1=0,x﹣y+1=0.

∴平行线间的距离为d==,

故选:B.

 

5.(5分)(2016•浙江)已知a,b>0且a≠1,b≠1,若logab>1,则(  )

A.(a﹣1)(b﹣1)<0    B.(a﹣1)(a﹣b)>0    C.(b﹣1)(b﹣a)<0    D.(b﹣1)(b﹣a)>0

【解答】解:若a>1,则由logab>1得logab>logaa,即b>a>1,此时b﹣a>0,b>1,即(b﹣1)(b﹣a)>0,

若0<a<1,则由logab>1得logab>logaa,即b<a<1,此时b﹣a<0,b<1,即(b﹣1)(b﹣a)>0,

综上(b﹣1)(b﹣a)>0,

故选:D.

 

6.(5分)(2016•浙江)已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的(  )

A.充分不必要条件    B.必要不充分条件

C.充分必要条件    D.既不充分也不必要条件

【解答】解:f(x)的对称轴为x=﹣,fmin(x)=﹣.

(1)若b<0,则﹣>﹣,∴当f(x)=﹣时,f(f(x))取得最小值f(﹣)=﹣,

即f(f(x))的最小值与f(x)的最小值相等.

∴“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的充分条件.

(2)若f(f(x))的最小值与f(x)的最小值相等,

则fmin(x)≤﹣,即﹣≤﹣,解得b≤0或b≥2.

∴“b<0”不是“f(f(x))的最小值与f(x)的最小值相等”的必要条件.

故选A.

 

7.(5分)(2016•浙江)已知函数f(x)满足:f(x)≥|x|且f(x)≥2x,x∈R.(  )

A.若f(a)≤|b|,则a≤b    B.若f(a)≤2b,则a≤b

C.若f(a)≥|b|,则a≥b    D.若f(a)≥2b,则a≥b

【解答】解:A.若f(a)≤|b|,则由条件f(x)≥|x|得f(a)≥|a|,

即|a|≤|b|,则a≤b不一定成立,故A错误,

B.若f(a)≤2b,

则由条件知f(x)≥2x,

即f(a)≥2a,则2a≤f(a)≤2b,

则a≤b,故B正确,

C.若f(a)≥|b|,则由条件f(x)≥|x|得f(a)≥|a|,则|a|≥|b|不一定成立,故C错误,

D.若f(a)≥2b,则由条件f(x)≥2x,得f(a)≥2a,则2a≥2b,不一定成立,即a≥b不一定成立,故D错误,

故选:B

 

8.(5分)(2016•浙江)如图,点列{An}、{Bn}分别在某锐角的两边上,且|AnAn+1|=|An+1An+2|,An≠An+1,n∈N*,|BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1,n∈N*,(P≠Q表示点P与Q不重合)若dn=|AnBn|,Sn为△AnBnBn+1的面积,则(  )

A.{Sn}是等差数列    B.{Sn2}是等差数列

C.{dn}是等差数列    D.{dn2}是等差数列

【解答】解:设锐角的顶点为O,|OA1|=a,|OB1|=b,

|AnAn+1|=|An+1An+2|=b,|BnBn+1|=|Bn+1Bn+2|=d,

由于a,b不确定,则{dn}不一定是等差数列,

{dn2}不一定是等差数列,

设△AnBnBn+1的底边BnBn+1上的高为hn,

由三角形的相似可得==,

==,

两式相加可得,==2,

即有hn+hn+2=2hn+1,

由Sn=d•hn,可得Sn+Sn+2=2Sn+1,

即为Sn+2﹣Sn+1=Sn+1﹣Sn,

则数列{Sn}为等差数列.

故选:A.

 

二、填空题

9.(6分)(2016•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是 80 cm2,体积是 40 cm3.

【解答】解:根据几何体的三视图,得;

该几何体是下部为长方体,其长和宽都为4,高为2,

表面积为2×4×4+2×42=cm2,体积为2×42=32cm3;

上部为正方体,其棱长为2,

表面积是6×22=24 cm2,体积为23=8cm3;

所以几何体的表面积为+24﹣2×22=80cm2,

体积为32+8=40cm3.

故答案为:80;40.

 

10.(6分)(2016•浙江)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是 (﹣2,﹣4) ,半径是 5 .

【解答】解:∵方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,

∴a2=a+2≠0,解得a=﹣1或a=2.

当a=﹣1时,方程化为x2+y2+4x+8y﹣5=0,

配方得(x+2)2+(y+4)2=25,所得圆的圆心坐标为(﹣2,﹣4),半径为5;

当a=2时,方程化为,

此时,方程不表示圆,

故答案为:(﹣2,﹣4),5.

 

11.(6分)(2016•浙江)已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=  ,b= 1 .

【解答】解:∵2cos2x+sin2x=1+cos2x+sin2x

=1+(cos2x+sin2x)+1

=sin(2x+)+1,

∴A=,b=1,

故答案为:;1.

 

12.(6分)(2016•浙江)设函数f(x)=x3+3x2+1,已知a≠0,且f(x)﹣f(a)=(x﹣b)(x﹣a)2,x∈R,则实数a= ﹣2 ,b= 1 .

【解答】解:∵f(x)=x3+3x2+1,

∴f(x)﹣f(a)=x3+3x2+1﹣(a3+3a2+1)

=x3+3x2﹣(a3+3a2)

∵(x﹣b)(x﹣a)2=(x﹣b)(x2﹣2ax+a2)=x3﹣(2a+b)x2+(a2+2ab)x﹣a2b,

且f(x)﹣f(a)=(x﹣b)(x﹣a)2,

∴,解得或(舍去),

故答案为:﹣2;1.

 

13.(4分)(2016•浙江)设双曲线x2﹣=1的左、右焦点分别为F1、F2,若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是  .

【解答】解:如图,

由双曲线x2﹣=1,得a2=1,b2=3,

∴.

不妨以P在双曲线右支为例,当PF2⊥x轴时,

把x=2代入x2﹣=1,得y=±3,即|PF2|=3,

此时|PF1|=|PF2|+2=5,则|PF1|+|PF2|=8;

由PF1⊥PF2,得,

又|PF1|﹣|PF2|=2,①

两边平方得:,

∴|PF1||PF2|=6,②

联立①②解得:,

此时|PF1|+|PF2|=.

∴使△F1PF2为锐角三角形的|PF1|+|PF2|的取值范围是().

故答案为:().

 

14.(4分)(2016•浙江)如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=,∠ADC=90°,沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是  .

【解答】解:如图所示,取AC的中点O,∵AB=BC=3,∴BO⊥AC,

在Rt△ACD′中,=.

作D′E⊥AC,垂足为E,D′E==.

CO=,CE===,

∴EO=CO﹣CE=.

过点B作BF∥BO,作FE∥BO交BF于点F,则EF⊥AC.连接D′F.∠FBD′为直线AC与BD′所成的角.

则四边形BOEF为矩形,∴BF=EO=.

EF=BO==.

则∠FED′为二面角D′﹣CA﹣B的平面角,设为θ.

则D′F2=+﹣2×cosθ=﹣5cosθ≥,cosθ=1时取等号.

∴D′B的最小值==2.

∴直线AC与BD′所成角的余弦的最大值===.

故答案为:.

 

15.(4分)(2016•浙江)已知平面向量,,||=1,||=2,=1,若为平面单位向量,则||+||的最大值是  .

【解答】解:||+||=,

其几何意义为在上的投影的绝对值与在上投影的绝对值的和,

当与共线时,取得最大值.

∴=.

故答案为:.

 

三、解答题

16.(14分)(2016•浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.

(1)证明:A=2B;

(2)若cosB=,求cosC的值.

【解答】(1)证明:∵b+c=2acosB,

∴sinB+sinC=2sinAcosB,

∵sinC=sin(A+B)=sinAcosB+cosAsinB,

∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B),由A,B∈(0,π),

∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).

∴A=2B.

(II)解:cosB=,∴sinB==.

cosA=cos2B=2cos2B﹣1=,sinA==.

∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=+×=.

 

17.(15分)(2016•浙江)设数列{an}的前n项和为Sn,已知S2=4,an+1=2Sn+1,n∈N*.

(Ⅰ)求通项公式an;

(Ⅱ)求数列{|an﹣n﹣2|}的前n项和.

【解答】解:(Ⅰ)∵S2=4,an+1=2Sn+1,n∈N*.

∴a1+a2=4,a2=2S1+1=2a1+1,

解得a1=1,a2=3,

当n≥2时,an+1=2Sn+1,an=2Sn﹣1+1,

两式相减得an+1﹣an=2(Sn﹣Sn﹣1)=2an,

即an+1=3an,当n=1时,a1=1,a2=3,

满足an+1=3an,

∴=3,则数列{an}是公比q=3的等比数列,

则通项公式an=3n﹣1.

(Ⅱ)an﹣n﹣2=3n﹣1﹣n﹣2,

设bn=|an﹣n﹣2|=|3n﹣1﹣n﹣2|,

则b1=|30﹣1﹣2|=2,b2=|3﹣2﹣2|=1,

当n≥3时,3n﹣1﹣n﹣2>0,

则bn=|an﹣n﹣2|=3n﹣1﹣n﹣2,

此时数列{|an﹣n﹣2|}的前n项和Tn=3+﹣=,

则Tn==.

 

18.(15分)(2016•浙江)如图,在三棱台ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.

(Ⅰ)求证:BF⊥平面ACFD;

(Ⅱ)求直线BD与平面ACFD所成角的余弦值.

【解答】解:(Ⅰ)证明:延长AD,BE,CF相交于一点K,如图所示:

∵平面BCFE⊥平面ABC,且AC⊥BC;

∴AC⊥平面BCK,BF⊂平面BCK;

∴BF⊥AC;

又EF∥BC,BE=EF=FC=1,BC=2;

∴△BCK为等边三角形,且F为CK的中点;

∴BF⊥CK,且AC∩CK=C;

∴BF⊥平面ACFD;

(Ⅱ)∵BF⊥平面ACFD;

∴∠BDF是直线BD和平面ACFD所成的角;

∵F为CK中点,且DF∥AC;

∴DF为△ACK的中位线,且AC=3;

∴;

又;

∴在Rt△BFD中,,cos;

即直线BD和平面ACFD所成角的余弦值为.

 

19.(15分)(2016•浙江)如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|﹣1,

(Ⅰ)求p的值;

(Ⅱ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.

【解答】解:(Ⅰ)由题意可得,抛物线上点A到焦点F的距离等于A到直线x=﹣1的距离,

由抛物线定义得,,即p=2;

(Ⅱ)由(Ⅰ)得,抛物线方程为y2=4x,F(1,0),可设(t2,2t),t≠0,t≠±1,

∵AF不垂直y轴,

∴设直线AF:x=sy+1(s≠0),

联立,得y2﹣4sy﹣4=0.

y1y2=﹣4,

∴B(),

又直线AB的斜率为,故直线FN的斜率为,

从而得FN:,直线BN:y=﹣,

则N(),

设M(m,0),由A、M、N三点共线,得,

于是m==,得m<0或m>2.

经检验,m<0或m>2满足题意.

∴点M的横坐标的取值范围为(﹣∞,0)∪(2,+∞).

 

20.(15分)(2016•浙江)设函数f(x)=x3+,x∈[0,1],证明:

(Ⅰ)f(x)≥1﹣x+x2

(Ⅱ)<f(x)≤.

【解答】解:(Ⅰ)证明:因为f(x)=x3+,x∈[0,1],

且1﹣x+x2﹣x3==,

所以≤,

所以1﹣x+x2﹣x3≤,

即f(x)≥1﹣x+x2;

(Ⅱ)证明:因为0≤x≤1,所以x3≤x,

所以f(x)=x3+≤x+=x+﹣+=+≤;

由(Ⅰ)得,f(x)≥1﹣x+x2=+≥,

且f()=+=>,

所以f(x)>;

综上,<f(x)≤.

 

参与本试卷答题和审题的老师有:zhczcb;zlzhan;maths;双曲线;742048;sxs123;gongjy;沂蒙松(排名不分先后)

菁优网

2016年6月17日下载本文

显示全文
专题