视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
PLC控制的涂布机同步
2025-09-25 14:14:29 责编:小OO
文档
基于PLC和模糊控制的涂布机同步控制系统

2004-12-24 10:43:00

 

  摘要:薄纸在涂布过程中存在张力小,容易拉断的问题,通过PLC和变频器结合控制,加上PID和模糊控制变系数相结合的算法,在实际连续生产中得到了较好的评价。

关键词:PLC;变频器;PID;模糊控制;涂布同步控制

1  前言    

    造纸企业大多面临着经济效益低、环保压力大的困境,特别是2001年以来环保执法监督、检查力度加大,许多造纸厂化学制浆被关停,中小型造纸企业倍感生存困难。开发特种用纸,有利于治理污染、保护环境,而且技术含量高,附加值高,可以使企业产值效益大幅增长。涂布纸就是其中一种附加值比较高的特种纸。    

    本例薄纸在涂布过程中,纸张能承受的张力很小,经过料液之后,湿纸的强度进一步降低,对涂布机运转同步的要求需相应地提高,对于同步控制的程序设计要求很高。

2  涂布系统生产过程    

 

    薄纸涂布机的构造见图1。纸张从退纸架上退出,经施胶辊涂布后,进入烘箱烘干,在经张力辊,检测张力最后上烘缸进行收卷。开机时全机处在引纸状态。当纸张引上烘缸后就将烘缸状态切换到自动运行状态,开始进行提速,在指定时间内到达指定车速。速度由加速增量和PID输出值累加而成,此时同步控制要求张力辊在中间位置小范围内波动,确保纸张张力适宜。张力变化过大,容易造成纸张起皱,甚至于断裂,影响纸张的质量和生产的连续性。

3  同步控制系统    

 

    整个同步控制系统中,控制框图如图2所示。PLC根据各电机的状态信号,以及采集到的各电机速度脉冲和当前张力辊所在位置进行PID同步计算,计算出各电机的速度增减量,再输出给变频器,由变频器控制调节各电机的转速,使张力辊稳定在中间位置,保证纸张的生产质量。    

在正常生产时烘缸速度是由张力辊位置控制的。当烘缸速度慢于施胶辊时,纸张出现堆积现象,张力辊失去了纸张张力的支撑开始下滑,此时PID根据张力辊的偏差对烘缸进行

提速;相反烘缸速度快于施胶辊时,张力辊被纸张张力往上拉,PID控制烘缸减速。    

    张力辊位置与张力辊在引纸状态指定位置的偏差e做为计算PID时的输入值,输出为速度增量△U。PID计算按照以下公式进行:

 

 

    △Up、△Ui、△Ui分别是比例、积分和微分计算增量,Kp、Kd分别是比例系数和微分系数,Ti,和T则是积分时间和采样时间。    

    在系统提速过程中,由于加速时间和指定运行速度都是人为设定的,可能会出现加速时间过短造成加速过快。PID只能在有限范围内调节,当加速过快时,PID降低烘缸速度还没反映出来,给定的加速增量已经作用于烘缸,此时PID调节已经完全不起作用,纸张很容易被拉断。    

    因此增加烘缸变系数K来协调与PID的同时控制,即:△δ=K△δ,△δ为加速增量;当张力辊处于设定位置,即为50%的位置,e=0,K=1,显然此时PID不起作用,烘缸和施胶辊同步加速;当张力辊处于最高点或最低点时,K值为0,加速增量对于烘缸不起作用,只有PID进行调节烘缸的速度,使得张力辊恢复到平衡位置。所以增加烘缸变系数K后,消除了加速增量对于PID的影响,从而保证了同步问题。    

    对于K值在0~1变化时,使用模糊控制来确定。偏差e和偏差变化量ec做为模糊控制的输入。张力辊位置值str的范围为[0,1],张力辊位置偏差值e的范围为[—0.5,0.5](以[0,0.5]为例),偏差变化值ec的范围为[—0.2,0.2](实际生产中张力辊位置的变化值相当小),K值变化范围为[0,1]。将各变量范围划分为7个区间,表示为NB、NM、NS、CE(中点)、PS、PM、PB(由小到大),每个区间对应一个隶属函数。隶属函数取三角函数(如图3)。    

 

    模糊变量的赋值表略。根据实际控制经验,经过模糊推理得出模糊控制规则,建立如下模糊控制表1。    

 

    根据输入的偏差e及隶属函数图,可得包含偏差e的各输入模糊区间及各输入模糊区间相对应的隶属函数值μe(i)。同理得出包含偏差变化量ec的各输入模糊区间及各输入模糊区间相应的隶属函数值μc(i),由偏差e和偏差变化量ec的各输入模糊区间,查模糊控制表得出各对应的输出模糊集。输出模糊集中各隶属函数值μu(i)是输入模糊区间的各相应隶属函数值的乘积,即:

 

    模糊控制量输出采用中心平均模糊消除公式,把控制量由模糊量变为精确量,得到在区间(0,1)中相应的烘缸变系数K值。

 

为区间U(i)上中心点的取值(中心点的定义:该区间中使得隶属函数值达到单位值1的所有点中,(横轴)绝对值最小的点为中心点),M是模糊控制表中对应模糊规则的数目。    

    由于指定速度和加速时间都是人为设定的,在正常连续生产中需要经常变动,因此加入了定时器。指定速度一有变化,定时器就置零开始工作,根据指定速度的变化量来计算加速增量,以这个加速增量为基础对这个系统进行提速,同时同步控制算法保证整个系统生产的连续性。    

总的同步控制算法框图如图4。

 

4  结束语    

    使用如上介绍的PID和模糊控制变系数相结合的算法,很好地达到了同步效果;加上使用PLC和变频器,保证了控制的灵活性、准确性和可靠性。整个薄纸涂布同步控制系统在实际连续生产中得到了较好的评价。(鲁伟 麻红昭 冯亮 方一平) 下载本文

显示全文
专题