一、选择题(每题3分,共30分)
1. 下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是( )
A. B. C. D.
2.在一个直角三角形中,若斜边长是,一条直角边长为,则这个直角三角形的面积是( )
A. B. C. D.
3.如图1,一架2.5米长的梯子,斜靠在一竖直的墙上,这时梯足到墙底端的距离为0.7米,如果梯子的顶端下滑0.4米,则梯足将向外移( )
A.0.6米 B.0.7米 C.0.8米 D.0.9米
(1)
4.直角三角形有一条直角边的长是11,另外两边的长都是自然数,那么它的周长是( )
A.132 B.121 C.120 D.以上答案都不对
5.直角三角形的面积为,斜边上的中线长为,则这个三角形周长为( )
A. B. C. D.
6. 直角三角形的三边是,并且都是正整数,则三角形其中一边的长可能是( )
A.61 B.71 C.81 D.91
7、已知一个直角三角形的两条边长分别为,则第三条边长为( )
A. B. C. D.
8、如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m.同时梯子的顶端B下降
至B′,那么BB′( ).
A.小于1m B.大于1m C.等于1m D.小于或等于1m
9、将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是( ).
A.h≤17cm B.h≥8cm
C.15cm≤h≤16cm D.7cm≤h≤16cm
二、填空题(每题3分,共24分)
1、在Rt△ABC中,∠C=90°,且2a=3b,c=2,则a=_____,b=_____.
2、 如图2,以三角形的三边为直径分别向三角形外侧作半圆,其中两个半圆的面积和等于另一个半圆的面积,则此三角形的形状为_____.
3、如图,矩形零件上两孔中心A、B的距离是_____(精确到个位).
4、如图3,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行_____米.
(3) (4) (5)
5、如图4,已知中,,以的各边为边在外作三个正方形,分别表示这三个正方形的面积,,则
6、如图5,已知,中,,从直角三角形两个锐角顶点所引的中线的长,则斜边之长为______.
7、如图6,在长方形中,,在上存在一点,沿直线把折叠,使点恰好落在边上,设此点为,若的面积为,那么折叠的面积为_____.
(6) (7) (8)
8、如图7,已知:中,, 这边上的中线长,,则为_____.
9、一个三角形的三条边长分别为,则三角形中最大的角是_____.
10、在中,则_____.
11、如图,一个三级台阶,它的每一级的长、宽和高分别为20、3、2,A 和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是 .
12、如图中阴影部分是一个正方形,如果正方形的面积为厘米2,则的长为 厘米。
三、解答题
1、如图,小李准备建一个蔬菜大棚,棚宽,高,长,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积.
2、如图,有一只小鸟从一棵高的小树顶飞到离该树远、高的大树顶上,那么这只小鸟飞行的最短路程是多少?(请先画出示意图,然后再求解)
3、“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方处,过了后,测得小汽车与车速检测仪间距离为,这辆小汽车超速了吗?
4、如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?
5、如图,A、B两个小集镇在河流的同侧,分别到河的距离为千米,千米,且千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?
6、 如图,一架长的梯子AB,斜靠在一竖直的墙AC上,这时梯足到墙底端的距离为,如果梯子的顶端沿墙下滑,那么梯足将向外移多少米?
7、如图,某沿海开放城市A接到台风警报,在该市正南方向100km的B处有一台风中心,沿BC方向以20km/h的速度向D移动,已知城市A到BC的距离AD=60km,那么台风中心经过多长时间从B点移到D点?如果在距台风中心30km的圆形区域内都将有受到台风的破坏的危险,正在D点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险?
8、△ABC中,BC,AC,AB,若∠C=90°,如图(1),根据勾股定理,则,若△ABC不是直角三角形,如图(2)和图(3),请你类比勾股定理,试猜想与的关系,并证明你的结论.
9、如图,一块长方体砖宽,长,上的点距地面的高,地面上处的一只蚂蚁到处吃食,需要爬行的最短路径是多少?
10、如图所示的一块地,,,,,,求这块地的面积.
11、如图所示,在中, ,且, ,求的长.
12、如图,P是等边三角形ABC内一点,, , ,求△ABC的边长.
13、11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?
14、如图所示1为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图2所示。已知展开图中每个正方形的边长为1.(1)求在该展开图中可画出最长线段的长度?这样的线段可画几条?(2)试比较立体图中∠BAC与平面展开图中∠的大小关系?
15、如图1-1-5(1)是用硬板纸做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c,如图l-l-5⑵是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图.写出它是什么图形;(2)用这个图形证明勾股定理;(3)假设图(1)中的直角三角形有若干个,你能运用图(1)中所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼后的示意图(无需证明)
16、如右图1-19,壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A处,它发现在自己的正上方油罐上边缘的B处有一只害虫,便决定捕捉这只害虫,为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行突然袭击.结果,壁虎的偷袭得到成功,获得了一顿美餐.请问壁虎至少要爬行多少路程才能捕到害虫?(π取3.14,结果保留1位小数,可以用计算器计算)变式:如图为一棱长为3cm的正方体,把所有面都分为9个小正方形,其边长都是1cm,假设一只蚂蚁每秒爬行2cm,则它从下地面A点沿表面爬行至右侧面的B点,最少要花几秒钟?
17、如图, ABC为等腰直角三角形,,将ABH绕点A逆时针旋转到AC处,若,试求出、两点之间的距离。
18、、如图,某公园内有一棵大树,为测量树高,小明C
处用侧角仪测得树顶端A的仰角为30°,已知侧角仪高DC=1.4m,
BC=30米,请帮助小明计算出树高AB.(取1.732,结果保留
三个有效数字)
19、如图,甲船以16海里/时的速度离开港口,向东南航行,
乙船在同时同地向西南方向航行,已知他们离开港口一个半小时后
分别到达B、A两点,且知AB=30海里,问乙船每小时航行多少
海里?
20、去年某省将地处A、B两地的两所大学合并成了一所综合性
大学,为了方便A、B两地师生的交往,学校准备在相距2km的A、
B两地之间修筑一条笔直公路(即图中的线段AB),经测量,在A地
的北偏东60°方向、B地的西偏北45°方向C处有一个半径为0.7km
的公园,问计划修筑的这条公路会不会穿过公园?为什么?(≈1.732)
16、(9分)如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B 200m,结果他在水中实际游了520m,求该河流的宽度为多少?
19、(10分) 如图,有一个直角三角形纸片,两直角边AC=18cm,BC=24cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出BD的长吗?
20、(10分)如图,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少km处?
12.(2008,宁夏)如图所示,已知△ABC中,∠C=90°,AB的垂直平分线交BC于M,交AB于N,若AC=4,MB=2MC,求AB的长.
13、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。下载本文