漫画:
图1:一个集市上,很多人在一个鸡蛋摊子前面排队.由于鸡蛋紧俏,如果买的鸡蛋在10个以下(包括10个),每个3角钱;超过10个的部分,每个5角钱.
图2:集市的一角,卡莉娅对小高说:“我比你多花了1元3角”.旁边的墨莫插嘴:“我知道你们各买了多少鸡蛋”.
图3:另一边,阿呆对阿瓜说:“我比你多花了4元钱”,又问墨莫:“你知道我们买了多少个鸡蛋吗?”墨莫沉默了……
我们之前学过的问题都有一个特点,就是数量之间总有确定的关系,例如“甲是乙的3倍”,那么,这样只要知道了甲、乙中的一个量,就可以求出另一个量的大小.但是还有一类问题,其中包含了一些不那么确定的条件,例如“甲比乙多”,通过这个条件我们只能模糊地知道甲在数量上超过乙,但却无法确定甲比乙大多少,因此即使知道了甲、乙中的一个量,也不可能知道另一个的大小.再举一个例子,小高说他一个月的零花钱有100多元.但是,101元是100多元,199元也是100多元,我们并不能具体确定是多少钱,只是知道一个范围.像这样条件比较模糊的问题,我们就称之为“不确定问题”.
下面我们就来看一些这样的问题.
例题1.
松鼠一家三口一共采了200多个松果,松鼠爸爸采了其中的,松鼠妈妈采了其中的,那么松鼠宝宝采了多少个松果?
分析:乍一看,这题好像缺少条件,因为松鼠一家采的松果总数没有确定.不过要注意题目中有隐藏条件:每只松鼠采的松果都是整数个.
练习1.
高思学校某尖子班共有20多人,期末测试的结果为:的同学得满分,的同学优秀,的同学良好,那么得良好的同学有多少人?
上面的不确定性问题,我们是利用倍数关系得到确定结果的.有的时候,题目中的倍数关系可能隐藏的比较深,需要我们用心寻找.
例题2.
植物园里菊花与月季花的盆数之比是3:4,月季花与兰花的盆数之比是5:6.如果菊花比兰花少五十多盆,那么月季花比菊花多多少盆?
分析:可能有半盆菊花,或者盆月季吗?
练习2.
小高、墨莫和卡莉娅三人比谁的积分多,数了数之后发现:小高和墨莫的积分比为5:8,墨莫和卡莉娅的积分比为12:13,三人的积分总和为400多分,那么卡莉娅比小高多多少分?
我们在解题过程中,可能会遇到这样的题目,它包含有多个不确定性条件,我们需要综合考虑才能得到确定的结果.还有些题目,我们需要分析极端情况,才能得到范围大小.有时极端情况(最值)就是我们要寻找的答案.
例题3.
小明将100枚棋子分成3堆,已知第一堆比第二堆的2倍还多,第二堆比第三堆的2倍也要多,那么第三堆最多有多少枚棋子?
分析:如果设第三堆的棋子数为1份,那么第二堆和第三堆棋子分别最少有多少?
练习3.
小高、墨莫和卡莉娅三人比赛吃包子,最终共吃了40个包子.小高吃的包子数是卡莉娅的2倍,墨莫吃的包子数比卡莉娅的3倍要少,那么卡莉娅最少吃了多少个包子?
例题4.
把48本书分给两组小朋友,已知第二组比第一组多5人.如果把书全都分给第一组,一部分小朋友每人能拿到5本,其他小朋友每人能拿到4本;如果把书全都分给第二组,一部分小朋友每人能拿到4本,其他小朋友每人能拿到3本.问:两组一共有多少人?
分析:第一组的小朋友有人拿到5本,有人拿到4本,那么最多多少人,最少多少人?第二组的小朋友最多多少人,最少多少人?
练习4.
王老师买来120个苹果,准备分给幼儿园大班和小班的小朋友,已知小班比大班多14人.如果把苹果全部分给大班的小朋友,一部分小朋友每人能分到5个苹果,其他小朋友每人能拿到4个苹果;如果把苹果全部分给小班的小朋友,一部分小朋友每人能分到4个苹果,其他小朋友能分到3个苹果.问:小班有多少人?
例题5.
若干名家长(爸爸或妈妈,他们都不是老师)和老师陪同一些小学生参加数学竞赛.已知家长和老师共有22人,家长比老师多,妈妈比爸爸多,老师比妈妈多3人,问:在这些人中,爸爸有多少人?
分析:家长和老师共有22人,而且家长比老师多,那么家长至少得有多少人呢?家长中,妈妈又比爸爸多,那么妈妈至少得有多少人呢?相应的,女老师又至少得有多少人呢?
例题6.
为鼓励节约用电,某小区按下列方式收取电费:如果每月用电不超过24度,就按每度9角钱收费;如果超过24度,超出的部分按每度2元钱收费.已知五月份甲家比乙家多交了电费9元6角钱(不足一度的部分按一度电计算),那么甲、乙两家各交了多少电费?
分析:甲和乙所交的电费都超过24度了么?还是都没超过?或者是甲超过了,乙没有超过呢?首先应该判断出这个情况.
量子力学之不确定性原理
在物理学中,有一门很高深的学问,叫做量子力学.它主要是以微观粒子为研究对象,如:电子,质子和中子等.在量子力学形成与发展过程中,获得的许多现象与原理,极大地改变了人们对世界的看法.其中,“不确定性原理”是其典型代表.
要想明白“不确定性原理”,可以先从我们熟悉的物体说起.比如一辆汽车,我们既可以知道它的位置,也可以知道它的速度.但是对于微观粒子而言,非常奇妙的是,我们并不能同时确定它的位置和速度.比如一个电子,如果我们准确的知道它的位置,那么我们就不能确定它的速度.反过来,如果我们准确地知道它的速度,那么我们就不能确定它的位置.这就是所谓的不确定性原理,是不是很奇妙呢?
神奇的微观世界
作业1.五年级(1)班有四十多人,其中有的同学喜欢看《哈利·波特》,有的同学喜爱看《灰太狼与喜洋洋》,问五年级(1)班上共有多少人?
作业2.小高最近迷上了《水浒传》,三天看了200页.已知第二天看的页数是第一天看的2倍,第三天看的页数比第二天看的2倍还多,那么第一天最多看了多少页?
作业3.学期要结束了,温老师买来80块巧克力,准备分给精英1班和精英2班的同学.已知精英2班比精英1班多9人,如果把巧克力全部分给精英1班的同学,一部分同学每人能分到5个巧克力,其他同学每人能拿到4个巧克力;如果把巧克力全部分给精英2班的同学,一部分同学每人能分到4个巧克力,其他同学能分到3个巧克力.精英1班有多少人?
作业4.物美超市饮料部为鼓励消费,规定:买5瓶以下或5瓶可乐,每瓶10元;如果买5瓶以上,超出5瓶部分,每瓶8元.已知小高比卡莉娅多花了42元,小高买了多少瓶可乐?
作业5.小高、墨莫和卡莉娅三人比赛玩扫雷游戏,比赛结束后发现:小高所用时间与卡莉娅所用时间比为3:4,卡莉娅所用时间与墨莫所用时间比为6:7,又知道小高比墨莫少用二十多秒,那么小高完成扫雷游戏用了多长时间?
第十六讲 不确定性问题
例题1.答案:40
详解:由题目知,松果总数既是9的倍数,又是13的倍数,因此松果总数应为117的倍数.又知一共采了200多个松果,因此应为234个.松鼠宝宝采了个.
例题2.答案:30
详解:菊花、月季花和兰花的盆数之比是15:20:24,因此菊花比兰花少的盆数应为9的倍数,所以为54盆,1份为盆,月季花比菊花多盆.
例题3.答案:13
详解:设第三堆的棋子数为“1”份,第二堆的棋子数为“2”份多一些,第一堆的棋子数为“4”份多一些,总和为“7”份多一些.为使第三堆尽量多,即找与100最接近且是7的倍数的数,为98.但是98不行,只能找再小一点的91.因此第三堆最多有枚.
例题4.答案:25
详解:先看第一组,部分小朋友能拿到5本,人数应大于人,部分小朋友能拿到4本,人数应小于人,故第一组有10人或11人.再看第二组,部分小朋友能拿到4本,人数应大于人,部分小朋友能拿到3本,人数应小于人,故第二组有13、14或15人.又知道第二组比第一组多5人,因此第一组为10人,第二组为15人,两组共有25人.
例题5.答案:5
详解:家长比老师多,因此家长至少为12人,老师最多10人.妈妈比爸爸多,说明妈妈至少为7人,又知道老师比妈妈多3人,因此老师10人,妈妈7人,爸爸5人.
例题6.答案:27.6元,18元
详解:本题需要进行分类讨论.如果甲、乙两家均未超过24度,那么甲家比乙家多交的电费应为9的倍数,如果甲、乙两家均超过24度,那么甲家比乙家多交的电费应为20的倍数.而96角既非9的倍数,也不是20的倍数,因此只能是甲家超过24度,乙家没有超过24度.经简单讨论,当乙家为20度时满足条件,此时甲家用了27度.甲、乙两家分别交了27.6元和18元.
练习1.答案:12
简答:可知该班的人数既是8的倍数,也是3的倍数,还得是2的倍数,那么一定是24的倍数,只能是24.得良好的同学占了一半,有12人.
练习2.答案:77
简答:小高、墨莫和卡莉娅的积分比是15:24:26,总分应为的倍数.又知道三人的积分总和为400多分,故为分.卡莉娅比小高多分.
练习3.答案:7
简答:设卡莉娅吃的包子数为“1”份,小高吃的包子数为“2”份,墨莫吃的包子数为“3”份少一些,因此总包子数加上一个数应为6的倍数,问卡莉娅最少吃了多少,至少加上2才是6的倍数,因此卡莉娅最少吃了个包子.
练习4.答案:39
简答:大班小朋友有些人分到5个,其他人分到4个,说明大班的小朋友最多有29人,最少有25人.小班小朋友有些人分到4个,其他人分到3个,说明小班的小朋友最多有39个,最少有31个.又知道小班比大班多14人,那么小班只能有39人,大班只能有25人.
作业1.答案:48
简答:可知人数既是6的倍数,又是8的倍数,那么一定是24的倍数.只能是48.
作业2.答案:28
简答:设第一天看了1份,那么第二天看了2份,第三天看了4份还多.一共看了7份还多.那么1份最多是28页.
作业3.答案:17
简答:尖子1班的人数范围是17~19,尖子2班的人数范围是21~26.2班比1班多9人,那么2班有26人,1班有17人.
作业4.答案:9
简答:,说明小高买了9瓶,卡莉娅买了4瓶.
作业5.答案:4:5
简答:小高、墨莫和卡莉娅所用时间之比是9:14:12,小高比墨莫少的时间一定是5的倍数,只能是25.那么小高用了秒.下载本文