一、圆的综合
1.(类比概念)三角形的内切圆是以三个内角的平分线的交点为圆心,以这点到三边的距离为半径的圆,则三角形可以称为圆的外切三角形,可以得出三角形的三边与该圆相切.以此类推,如图1,各边都和圆相切的四边形称为圆外切四边形
(性质探究)如图1,试探究圆外切四边形的ABCD两组对边AB,CD与BC,AD之间的数量关系
猜想结论: (要求用文字语言叙述)
写出证明过程(利用图1,写出已知、求证、证明)
(性质应用)
①初中学过的下列四边形中哪些是圆外切四边形 (填序号)
A:平行四边形:B:菱形:C:矩形;D:正方形
②如图2,圆外切四边形ABCD,且AB=12,CD=8,则四边形的周长是 .
③圆外切四边形的周长为48cm,相邻的三条边的比为5:4:7,求四边形各边的长.
【答案】见解析.
【解析】
【分析】
(1)根据切线长定理即可得出结论;
(2)①圆外切四边形是内心到四边的距离相等,即可得出结论;
②根据圆外切四边形的对边和相等,即可求出结论;
③根据圆外切四边形的性质求出第四边,利用周长建立方程求解即可得出结论.
【详解】
性质探讨:圆外切四边形的对边和相等,理由:
如图1,已知:四边形ABCD的四边AB,BC,CD,DA都于⊙O相切于G,F,E,H.
求证:AD+BC=AB+CD.
证明:∵AB,AD和⊙O相切,∴AG=AH,同理:BG=BF,CE=CF,DE=DH,∴AD+BC=AH+DH+BF+CF=AG+BG+CE+DE=AB+CD,即:圆外切四边形的对边和相等.
故答案为:圆外切四边形的对边和相等;
性质应用:①∵根据圆外切四边形的定义得:圆心到四边的距离相等.
∵平行四边形和矩形不存在一点到四边的距离相等,而菱形和正方形对角线的交点到四边的距离相等.
故答案为:B,D;
②∵圆外切四边形ABCD,∴AB+CD=AD+BC.
∵AB=12,CD=8,∴AD+BC=12+8=20,∴四边形的周长是AB+CD+AD+BC=20+20=40.
故答案为:40;
③∵相邻的三条边的比为5:4:7,∴设此三边为5x,4x,7x,根据圆外切四边形的性质得:第四边为5x+7x﹣4x=8x.
∵圆外切四边形的周长为48cm,∴4x+5x+7x+8x=24x=48,∴x=2,∴此四边形的四边为4x=8cm,5x=10cm,7x=14cm,8x=16cm.
【点睛】
本题是圆的综合题,主要考查了新定义圆的外切的性质,四边形的周长,平行四边形,矩形,菱形,正方形的性质,切线长定理,理解和掌握圆外切四边形的定义是解答本题的关键.
2.已知▱ABCD的周长为26,∠ABC=120°,BD为一条对角线,⊙O内切于△ABD,E,F,G为切点,已知⊙O的半径为.求▱ABCD的面积.
【答案】20
【解析】
【分析】
首先利用三边及⊙O的半径表示出平行四边形的面积,再根据题意求出AB+AD=13,然后利用切线的性质求出BD的长即可解答.
【详解】
设⊙O分别切△ABD的边AD、AB、BD于点G、E、F;
平行四边形ABCD的面积为S;
则S=2S△ABD=2×(AB·OE+BD·OF+AD·OG)=(AB+AD+BD);
∵平行四边形ABCD的周长为26,
∴AB+AD=13,
∴S=(13+BD);连接OA;
由题意得:∠OAE=30°,
∴AG=AE=3;同理可证DF=DG,BF=BE;
∴DF+BF=DG+BE=13﹣3﹣3=7,
即BD=7,
∴S=(13+7)=20.
即平行四边形ABCD的面积为20.
3.如图,已知Rt△ABC中,C=90°,O在AC上,以OC为半径作⊙O,切AB于D点,且BC=BD.
(1)求证:AB为⊙O的切线;
(2)若BC=6,sinA=,求⊙O的半径;
(3)在(2)的条件下,P点在⊙O上为一动点,求BP的最大值与最小值.
【答案】(1)连OD,证明略;(2)半径为3;(3)最大值3+3 ,3-3.
【解析】
分析:(1)连接OD,OB,证明△ODB≌△OCB即可.
(2)由sinA=且BC=6可知,AB=10且cosA=,然后求出OD的长度即可.
(3)由三角形的三边关系,可知当连接OB交⊙O于点E、F,当点P分别于点E、F重合时,BP分别取最小值和最大值.
详解:(1)如图:连接OD、OB.
在△ODB和△OCB中:
OD=OC,OB=OB,BC=BD;
∴△ODB≌△OCB(SSS).
∴∠ODB=∠C=90°.
∴AB为⊙O的切线.
(2)如图:
∵sinA=,∴,
∵BC=6,∴AB=10,
∵BD=BC=6,
∴AD=AB-BD=4,
∵sinA=,∴cosA=,
∴OA=5,∴OD=3,
即⊙O的半径为:3.
(3)如图:连接OB,交⊙O为点E、F,
由三角形的三边关系可知:
当P点与E点重合时,PB取最小值.
由(2)可知:OD=3,DB=6,
∴OB=.
∴PB=OB-OE=.
当P点与F点重合时,PB去最大值,
PB=OP+OB=3+.
点睛:本题属于综合类型题,主要考查了圆的综合知识.关键是对三角函数值、勾股定理、全等三角形判定与性质的理解.
4.已知,如图:O1为x轴上一点,以O1为圆心作⊙O1交x轴于C、D两点,交y轴于M、N两点,∠CMD的外角平分线交⊙O1于点E,AB是弦,且AB∥CD,直线DM的解析式为y=3x+3.
(1)如图1,求⊙O1半径及点E的坐标.
(2)如图2,过E作EF⊥BC于F,若A、B为弧CND上两动点且弦AB∥CD,试问:BF+CF与AC之间是否存在某种等量关系?请写出你的结论,并证明.
(3)在(2)的条件下,EF交⊙O1于点G,问弦BG的长度是否变化?若不变直接写出BG的长(不写过程),若变化自画图说明理由.
【答案】(1)r=5 E(4,5) (2)BF+CF=AC (3)弦BG的长度不变,等于5
【解析】
分析:(1)连接ED、EC、EO1、MO1,如图1,可以证到∠ECD=∠SME=∠EMC=∠EDC,从而可以证到∠EO1D=∠EO1C=90°.由直线DM的解析式为y=3x+3可得OD=1,OM=3.设⊙O1的半径为r.在Rt△MOO1中利用勾股定理就可解决问题.
(2)过点O1作O1P⊥EG于P,过点O1作O1Q⊥BC于Q,连接EO1、DB,如图2.由AB∥DC可证到BD=AC,易证四边形O1PFQ是矩形,从而有O1P=FQ,∠PO1Q=90°,进而有∠EO1P=∠CO1Q,从而可以证到△EPO1≌△CQO1,则有PO1=QO1.根据三角形中位线定理可得FQ=BD.从而可以得到BF+CF=2FQ=AC.
(3)连接EO1,ED,EB,BG,如图3.易证EF∥BD,则有∠GEB=∠EBD,从而有=,也就有BG=DE.在Rt△EO1D中运用勾股定理求出ED,就可解决问题.
详解:(1)连接ED、EC、EO1、MO1,如图1.
ME平分∠SMC,∴∠SME=∠EMC.
SME=∠ECD,∠EMC=∠EDC,∴∠ECD=∠EDC,∴∠EO1D=∠EO1C.
EO1D+∠EO1C=180°,∴∠EO1D=∠EO1C=90°.
直线DM的解析式为y=3x+3,∴点M的坐标为(0,3),点D的坐标为(﹣1,0),∴OD=1,OM=3.
设⊙O1的半径为r,则MO1=DO1=r.
在Rt△MOO1中,(r﹣1)2+32=r2.
解得:r=5,∴OO1=4,EO1=5,∴⊙O1半径为5,点E的坐标为(4,5).
(2)BF+CF=AC.理由如下:
过点O1作O1P⊥EG于P,过点O1作O1Q⊥BC于Q,连接EO1、DB,如图2.
AB∥DC,∴∠DCA=∠BAC,∴==,∴BD=AC.
O1P⊥EG,O1Q⊥BC,EF⊥BF,∴∠O1PF=∠PFQ=∠O1QF=90°,∴四边形O1PFQ是矩形,∴O1P=FQ,∠PO1Q=90°,∴∠EO1P=90°﹣∠PO1C=∠CO1Q.
在△EPO1和△CQO1中,,
∴△EPO1≌△CQO1,∴PO1=QO1,∴FQ=QO1.
QO1⊥BC,∴BQ=CQ.
CO1=DO1,∴O1Q=BD,∴FQ=BD.
BF+CF=FQ+BQ+CF=FQ+CQ+CF=2FQ,∴BF+CF=BD=AC.
(3)连接EO1,ED,EB,BG,如图3.
DC是⊙O1的直径,∴∠DBC=90°,∴∠DBC+∠EFB=180°,∴EF∥BD,∴∠GEB=∠EBD,∴=,∴BG=DE.
DO1=EO1=5,EO1⊥DO1,∴DE=5,∴BG=5,
∴弦BG的长度不变,等于5.
点睛:本题考查了圆周角定理、圆内接四边形的性质、弧与弦的关系、垂径定理、全等三角形的判定与性质、矩形的判定与性质、三角形中位线定理、平行线的判定与性质、勾股定理等知识,综合性比较强,有一定的难度.而由AB∥DC证到AC=BD是解决第(2)小题的关键,由EG∥DB证到BG=DE是解决第(3)小题的关键.
5.如图,⊙M与菱形ABCD在平面直角坐标系中,点M的坐标为(3,﹣1),点A的坐标为(﹣2,),点B的坐标为(﹣3,0),点C在x轴上,且点D在点A的左侧.
(1)求菱形ABCD的周长;
(2)若⊙M沿x轴向右以每秒2个单位长度的速度平移,同时菱形ABCD沿x轴向右以每秒3个单位长度的速度平移,设菱形移动的时间为t(秒),当⊙M与BC相切,且切点为BC的中点时,连接BD,求:
①t的值;
②∠MBD的度数;
(3)在(2)的条件下,当点M与BD所在的直线的距离为1时,求t的值.
【答案】(1)8;(2)①7;②105°;(3)t=6﹣或6+.
【解析】
分析:(1)根据勾股定理求菱形的边长为2,所以可得周长为8;
(2)①如图2,先根据坐标求EF的长,由EE'﹣FE'=EF=7,列式得:3t﹣2t=7,可得t的值;
先求∠EBA=60°,则∠FBA=120°,再得∠MBF=45°,相加可得:∠MBD=∠MBF+∠FBD=45°+60°=105°;
(3)分两种情况讨论:作出距离MN和ME,第一种情况:如图5由距离为1可知:BD为⊙M的切线,由BC是⊙M的切线,得∠MBE=30°,列式为3t+=2t+6,解出即可;
第二种情况:如图6,同理可得t的值.
详解:(1)如图1,过A作AE⊥BC于E.
点A的坐标为(﹣2,),点B的坐标为(﹣3,0),∴AE=,BE=3﹣2=1,∴AB===2.
四边形ABCD是菱形,∴AB=BC=CD=AD=2,∴菱形ABCD的周长=2×4=8;
(2)①如图2,⊙M与x轴的切点为F,BC的中点为E.
M(3,﹣1),∴F(3,0).
BC=2,且E为BC的中点,∴E(﹣4,0),∴EF=7,即EE'﹣FE'=EF,∴3t﹣2t=7,t=7;
②由(1)可知:BE=1,AE=,
∴tan∠EBA===,∴∠EBA=60°,如图4,∴∠FBA=120°.
四边形ABCD是菱形,∴∠FBD=∠FBA==60°.
BC是⊙M的切线,∴MF⊥BC.
F是BC的中点,∴BF=MF=1,∴△BFM是等腰直角三角形,
∴∠MBF=45°,∴∠MBD=∠MBF+∠FBD=45°+60°=105°;
(3)连接BM,过M作MN⊥BD,垂足为N,作ME⊥BC于E,分两种情况:
第一种情况:如图5.
四边形ABCD是菱形,∠ABC=120°,∴∠CBD=60°,∴∠NBE=60°.
点M与BD所在的直线的距离为1,∴MN=1,∴BD为⊙M的切线.
BC是⊙M的切线,∴∠MBE=30°.
ME=1,∴EB=,∴3t+=2t+6,t=6﹣;
第二种情况:如图6.
四边形ABCD是菱形,∠ABC=120°,∴∠DBC=60°,∴∠NBE=120°.
点M与BD所在的直线的距离为1,∴MN=1,∴BD为⊙M的切线.
BC是⊙M的切线,∴∠MBE=60°.
ME=MN=1,∴Rt△BEM中,tan60°=,EB==,
∴3t=2t+6+,t=6+;
综上所述:当点M与BD所在的直线的距离为1时,t=6﹣或6+.
点睛:本题是四边形和圆的综合题,考查了菱形的性质、圆的切线的性质和判定、特殊的三角函数值、等腰直角三角形的性质、动点运动问题,此类问题比较复杂,弄清动点运动方向、速度、时间和路程的关系,并与方程相结合,找等量关系,求出时间t的值.
6.如图,在中, ,垂足为,过的⊙O分别与交于点,连接.
(1)求证:≌;
(2)当与⊙O相切时,求⊙O的面积.
【答案】(1)见解析;(2).
【解析】
分析:(1)由等腰直角三角形的性质知AD=CD、∠1=∠C=45°,由∠EAF=90°知EF是⊙O的直径,据此知∠2+∠4=∠3+∠4=90°,得∠2=∠3,利用“ASA”证明即可得;
(2)当BC与⊙O相切时,AD是直径,根据∠C=45°、AC=可得AD=1,利用圆的面积公式可得答案.
详解:(1)如图,∵AB=AC,∠BAC=90°,∴∠C=45°.
又∵AD⊥BC,AB=AC,∴∠1=∠BAC=45°,BD=CD,∠ADC=90°.
又∵∠BAC=90°,BD=CD,∴AD=CD.
又∵∠EAF=90°,∴EF是⊙O的直径,∴∠EDF=90°,∴∠2+∠4=90°.
又∵∠3+∠4=90°,∴∠2=∠3.在△ADE和△CDF中.
,∴△ADE≌△CDF(ASA).
(2)当BC与⊙O相切时,AD是直径.在Rt△ADC中,∠C=45°,AC=,∴sin∠C=,∴AD=ACsin∠C=1,∴⊙O的半径为,∴⊙O的面积为.
点睛:本题主要考查圆的综合问题,解题的关键是熟练掌握等腰直角三角形的性质、全等三角形的判定与性质、与圆有关的位置关系等知识点.
7.如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.
(1)求证:DE是⊙O的切线;
(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?并在此条件下求sin∠CAE的值.
【答案】(1)见解析;(2).
【解析】
分析:(1)要证DE是⊙O的切线,必须证ED⊥OD,即∠EDB+∠ODB=90°
(2)要证AOED是平行四边形,则DE∥AB,D为AC中点,又BD⊥AC,所以△ABC为等腰直角三角形,所以∠CAB=45°,再由正弦的概念求解即可.
详解:(1)证明:连接O、D与B、D两点,
∵△BDC是Rt△,且E为BC中点,
∴∠EDB=∠EBD.(2分)
又∵OD=OB且∠EBD+∠DBO=90°,
∴∠EDB+∠ODB=90°.
∴DE是⊙O的切线.
(2)解:∵∠EDO=∠B=90°,
若要四边形AOED是平行四边形,则DE∥AB,D为AC中点,
又∵BD⊥AC,
∴△ABC为等腰直角三角形.
∴∠CAB=45°.
过E作EH⊥AC于H,
设BC=2k,则EH=k,AE=k,
∴sin∠CAE=.
点睛:本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.
8.如图1,四边形ABCD为⊙O内接四边形,连接AC、CO、BO,点C为弧BD的中点.
(1)求证:∠DAC=∠ACO+∠ABO;
(2)如图2,点E在OC上,连接EB,延长CO交AB于点F,若∠DAB=∠OBA+∠EBA.求证:EF=EB;
(3)在(2)的条件下,如图3,若OE+EB=AB,CE=2,AB=13,求AD的长.
【答案】(1)证明见解析;(2)证明见解析;(3)AD=7.
【解析】
试题分析:(1)如图1中,连接OA,只要证明∠CAB=∠1+∠2=∠ACO+∠ABO,由点C是 中点,推出 ,推出∠BAC=∠DAC,即可推出∠DAC=∠ACO+∠ABO;
(2)想办法证明∠EFB=∠EBF即可;
(3)如图3中,过点O作OH⊥AB,垂足为H,延长BE交HO的延长线于G,作BN⊥CF于N,作CK⊥AD于K,连接OA.作CT∠⊥AB于T.首先证明△EFB是等边三角形,再证明△ACK≌△ACT,Rt△DKC≌Rt△BTC,延长即可解决问题;
试题解析:(1)如图1中,连接OA,
∵OA=OC,∴∠1=∠ACO,
∵OA=OB,∴∠2=∠ABO,∴∠CAB=∠1+∠2=∠ACO+∠ABO,
∵点C是中点,∴,∴∠BAC=∠DAC,
∴∠DAC=∠ACO+∠ABO.
(2)如图2中,
∵∠BAD=∠BAC+∠DAC=2∠CAB,∠COB=2∠BAC,∴∠BAD=∠BOC,
∵∠DAB=∠OBA+∠EBA,∴∠BOC=∠OBA+∠EBA,
∴∠EFB=∠EBF,∴EF=EB.
(3)如图3中,过点O作OH⊥AB,垂足为H,延长BE交HO的延长线于G,作BN⊥CF于N,作CK⊥AD于K,连接OA.作CT∠⊥AB于T.
∵∠EBA+∠G=90°,∠CFB+∠HOF=90°,
∵∠EFB=∠EBF,∴∠G=∠HOF,
∵∠HOF=∠EOG,∴∠G=∠EOG,∴EG=EO,
∵OH⊥AB,∴AB=2HB,
∵OE+EB=AB,∴GE+EB=2HB,∴GB=2HB,
∴cos∠GBA= ,∴∠GBA=60°,
∴△EFB是等边三角形,设HF=a,
∵∠FOH=30°,∴OF=2FH=2a,
∵AB=13,∴EF=EB=FB=FH+BH=a+,
∴OE=EF﹣OF=FB﹣OF=﹣a,OB=OC=OE+EC=﹣a+2=﹣a,
∵NE=EF=a+,
∴ON=OE=EN=(﹣a)﹣(a+)=﹣a,
∵BO2﹣ON2=EB2﹣EN2,
∴(﹣a)2﹣(﹣a)2=(a+)2﹣(a+)2,
解得a=或﹣10(舍弃),
∴OE=5,EB=8,OB=7,
∵∠K=∠ATC=90°,∠KAC=∠TAC,AC=AC,∴△ACK≌△ACT,∴CK=CT,AK=AT,
∵,∴DC=BC,∴Rt△DKC≌Rt△BTC,∴DK=BT,
∵FT=FC=5,∴DK=TB=FB﹣FT=3,∴AK=AT=AB﹣TB=10,∴AD=AK﹣DK=10﹣3=7.
9.如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.
(1) 试判断BE与FH的数量关系,并说明理由;
(2) 求证:∠ACF=90°;
(3) 连接AF,过A,E,F三点作圆,如图2. 若EC=4,∠CEF=15°,求的长.
图1图2
【答案】(1)BE="FH" ;理由见解析
(2)证明见解析
(3)=2π
【解析】
试题分析:(1)由△ABE≌△EHF(SAS)即可得到BE=FH
(2)由(1)可知AB=EH,而BC=AB,FH=EB,从而可知△FHC是等腰直角三角形,∠FCH为45°,而∠ACB也为45°,从而可证明
(3)由已知可知∠EAC=30°,AF是直径,设圆心为O,连接EO,过点E作EN⊥AC于点N,则可得△ECN为等腰直角三角形,从而可得EN的长,进而可得AE的长,得到半径,得到所对圆心角的度数,从而求得弧长
试题解析:(1)BE=FH.理由如下:
∵四边形ABCD是正方形 ∴∠B=90°,
∵FH⊥BC ∴∠FHE=90°
又∵且∠BAE+∠AEB=90°
∴又∵AE=EF
∴△ABE≌△EHF(SAS)
∴BE=FH
(2)∵△ABE≌△EHF
∴BC=EH,BE=FH 又∵BE+EC=EC+CH ∴BE="CH"
∴CH=FH
∴∠FCH=45°,∴∠FCM=45°
∵AC是正方形对角线,∴ ∠ACD=45°
∴∠ACF=∠FCM +∠ACD =90°
(3)∵AE=EF,∴△AEF是等腰直角三角形
△AEF外接圆的圆心在斜边AF的中点上.设该中点为O.连结EO得∠AOE=90°
过E作EN⊥AC于点N
Rt△ENC中,EC=4,∠ECA=45°,∴EN=NC=
Rt△ENA中,EN =
又∵∠EAF=45° ∠CAF=∠CEF=15°(等弧对等角)
∴∠EAC=30°
∴AE=
Rt△AFE中,AE== EF,∴AF=8
AE所在的圆O半径为4,其所对的圆心角为∠AOE=90°
=2π·4·(90°÷360°)=2π
考点:1、正方形;2、等腰直角三角形;3、圆周角定理;4、三角函数
10.如图,⊙O的直径AB=8,C为圆周上一点,AC=4,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E.
(1)求∠AEC的度数;
(2)求证:四边形OBEC是菱形.
【答案】(1)30°;(2)详见解析.
【解析】
【分析】
(1)易得△AOC是等边三角形,则∠AOC=60°,根据圆周角定理得到∠AEC=30°;
(2)根据切线的性质得到OC⊥l,则有OC∥BD,再根据直径所对的圆周角为直角得到∠AEB=90°,则∠EAB=30°,可证得AB∥CE,得到四边形OBEC为平行四边形,再由OB=OC,即可判断四边形OBEC是菱形.
【详解】
(1)解:在△AOC中,AC=4,
∵AO=OC=4,
∴△AOC是等边三角形,
∴∠AOC=60°,
∴∠AEC=30°;
(2)证明:∵OC⊥l,BD⊥l.
∴OC∥BD.
∴∠ABD=∠AOC=60°.
∵AB为⊙O的直径,
∴∠AEB=90°,
∴△AEB为直角三角形,∠EAB=30°.
∴∠EAB=∠AEC.
∴CE∥OB,又∵CO∥EB
∴四边形OBEC 为平行四边形.
又∵OB=OC=4.
∴四边形OBEC是菱形.
【点睛】
本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了圆周角定理及其推论以及菱形的判定方法.
11.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE.
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=,BC=2,求⊙O的半径.
【答案】(1)直线CE与⊙O相切,理由见解析;(2)⊙O的半径为
【解析】
【分析】
(1)首先连接OE,由OE=OA与四边形ABCD是矩形,易求得∠DEC+∠OEA=90°,即OE⊥EC,即可证得直线CE与⊙O的位置关系是相切;
(2)首先易证得△CDE∽△CBA,然后根据相似三角形的对应边成比例,即可求得DE的长,又由勾股定理即可求得AC的长,然后设OA为x,即可得方程,解此方程即可求得⊙O的半径.
【详解】
解:(1)直线CE与⊙O相切.…
理由:连接OE,
∵四边形ABCD是矩形,
∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB,
∴∠DCE+∠DEC=90°,∠ACB=∠DAC,
又∠DCE=∠ACB,
∴∠DEC+∠DAC=90°,
∵OE=OA,
∴∠OEA=∠DAC,
∴∠DEC+∠OEA=90°,
∴∠OEC=90°,
∴OE⊥EC,
∵OE为圆O半径,
∴直线CE与⊙O相切;…
(2)∵∠B=∠D,∠DCE=∠ACB,
∴△CDE∽△CBA,
∴ ,
又CD=AB=,BC=2,
∴DE=1
根据勾股定理得EC=,
又,…
设OA为x,则,
解得,
∴⊙O的半径为.
【点睛】
此题考查了切线的判定与性质,矩形的性质,相似三角形的判定与性质以及勾股定理等知识.此题综合性较强,难度适中,解题的关键是注意数形结合思想与方程思想的应用,注意辅助线的作法.
12.如图,点A,B,C,D,E在⊙O上,AB⊥CB于点B,tanD=3,BC=2,H为CE延长线上一点,且AH=,CH.
(1)求证:AH是⊙O的切线;
(2)若点D是弧CE的中点,且AD交CE于点F,求证:HF=HA;
(3)在(2)的条件下,求EF的长.
【答案】(1)证明见解析(2)证明见解析(3)
【解析】
【分析】(1)连接AC,由AB⊥CB可知AC是⊙O的直径,由圆周角定理可得∠C=∠D,于是得到tanC=3,故此可知AB=6,在Rt△ABC中,由勾股定理得:AC2= 40,从而可得AC2+AH2=CH2,根据勾股定理的逆定理可得AC⊥AH,问题得证;
(2)连接DE、BE,由弦切角定理可知∠ABD=∠HAD,由D是的中点,可得∠CED=∠EBD,再由圆周角定理可得∠ABE=∠ADE,结合三角形的外角即可证明∠HAF=∠AFH,从而可证得AH=HF;
(3)由切割线定理可得EH=,由(2)可知AF=FH=,从而可得EF=FH﹣EH=-.
【详解】(1)如图1所示:连接AC.
∵AB⊥CB,
∴AC是⊙O的直径,
∵∠C=∠D,
∴tanC=3,
∴AB=3BC=3×2=6,
在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=40,
又∵AH2=10,CH2=50,
∴AC2+AH2=CH2,
∴△ACH为直角三角形,
∴AC⊥AH,
∴AH是圆O的切线;
(2)如图2所示:连接DE、BE,
∵AH是圆O的切线,
∴∠ABD=∠HAD,
∵D是的中点,
∴,
∴∠CED=∠EBD,
又∵∠ABE=∠ADE,
∴∠ABE+∠EBD=∠ADE+∠CED,
∴∠ABD=∠AFE,
∴∠HAF=∠AFH,
∴AH=HF;
(3)由切割线定理可知:AH2=EH•CH,即()2=5EH,
解得:EH=,
∵由(2)可知AF=FH=,
∴EF=FH﹣EH=-.
【点睛】本题主要考查圆的综合应用,解答主要应用了切线的判定定理、弦切角定理、切割线定理、圆周角定理、勾股定理、勾股定理的逆定理、三角形的外角的性质等,正确添加辅助线是解题的关键.
13.在平面直角坐标系xOy中,对于点P和图形W,如果以P为端点的任意一条射线与图形W最多只有一个公共点,那么称点P于图形W.
(1)如图1,已知点A(-2,0),以原点O为圆心,OA长为半径画弧交x轴正半轴于点 B.在P1(0,4),P2(0,1),P3(0,-3),P4(4,0)这四个点中,于的点是 ;
(2)如图2,已知点C(-3,0),D(0,3),E(3,0),点P是直线l:y=2x+8上的一个动点.若点P于折线CD-DE,求点P的横坐标xp的取值范围;
(3)如图3,⊙H是以点H(0,4)为圆心,半径为1的圆.点T(0,t)在y轴上且t>-3,以点T为中心的正方形KLMN的顶点K的坐标为(0,t+3),将正方形KLMN在x轴及x轴上方的部分记为图形W.若⊙H上的所有点都于图形W,直接写出t的取值范围.
【答案】(1)P2,P3;(2)xP<-5或xP>-.(3)-3<t<1-或1+<t<7-.
【解析】
【分析】
(1)根据点P于图形W的定义即可判断;
(2)求出直线DE,直线CD与直线y=2x+8的交点坐标即可判断;
(3)求出三种特殊位置时t的值,结合图象即可解决问题.
【详解】
(1)由题意可知:在P1(0,4),P2(0,1),P3(0,-3),P4(4,0)这四个点中,于的点是P2,P3.
(2)∵C(-3,0),D(0,3),E(3,0),
∴直线CD的解析式为y=x+3,直线DE的解析式为y=-x+3,
由,解得,可得直线l与直线CD的交点的横坐标为-5,
由,解得,可得直线l与直线DE的交点的横坐标为-,
∴满足条件的点P的横坐标xp的取值范围为:xP<-5或xP>-.
(3)如图3-1中,当直线KN与⊙H相切于点E时,连接EH,则EH=EK=1,HK=,
∴OT=KT+HK-OH=3+-4=-1,
∴T(0,1-),此时t=1-,
∴当-3<t<1-时,⊙H上的所有点都于图形W.
如图3-2中,当线段KN与⊙H相切于点E时,连接EH.
OT=OH+KH-KT=4+-3=1+,
∴T(0,1+),此时t=1+,
如图3-3中,当线段MN与⊙H相切于点E时,连接EH.
OT=OM+TM=4-+3=7-,
∴T(0,7-),此时t=7-,
∴当1+<t<7-时,⊙H上的所有点都于图形W.
综上所述,满足条件的t的值为-3<t<1-或1+<t<7-.
【点睛】
本题属于圆综合题,考查了切线的性质,一次函数的应用,点P于图形W的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会利用特殊位置解决实际问题.
14.如图,在中,,,点是边上一动点(不与点重合),以长为半径的与边的另一个交点为,过点作于点.
当与边相切时,求的半径;
联结交于点,设的长为,的长为,求关于的函数解析式,并直接写出的取值范围;
在的条件下,当以长为直径的与相交于边上的点时,求相交所得的公共弦的长.
【答案】(1);(2);(3)
【解析】
【分析】
(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=,则sinC=,sinC===,即可求解;
(2)PD∥BE,则=,即:,即可求解;
(3)证明四边形PDBE为平行四边形,则AG=GP=BD,即:AB=DB+AD=AG+AD=4,即可求解.
【详解】
(1)设⊙P与边BC相切的切点为H,圆的半径为R,
连接HP,则HP⊥BC,cosC=,则sinC=,
sinC===,解得:R=;
(2)在△ABC中,AC=BC=10,cosC=,
设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,
则BH=ACsinC=8,
同理可得:
CH=6,HA=4,AB=4,则:tan∠CAB=2BP==,
DA=x,则BD=4-x,
如下图所示,
PA=PD,∴∠PAD=∠CAB=∠CBA=β,
tanβ=2,则cosβ=,sinβ=,
EB=BDcosβ=(4-x)×=4-x,
∴PD∥BE,
∴=,即:,
整理得:y=;
(3)以EP为直径作圆Q如下图所示,
两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,
∵点Q时弧GD的中点,
∴DG⊥EP,
∵AG是圆P的直径,
∴∠GDA=90°,
∴EP∥BD,
由(2)知,PD∥BC,∴四边形PDBE为平行四边形,
∴AG=EP=BD,
∴AB=DB+AD=AG+AD=4,
设圆的半径为r,在△ADG中,
AD=2rcosβ=,DG=,AG=2r,
+2r=4,解得:2r=,
则:DG==10-2,
相交所得的公共弦的长为10-2.
【点睛】
本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.
15.如图1,⊙O的直径AB=12,P是弦BC上一动点(与点B,C不重合),∠ABC=30°,过点P作PD⊥OP交⊙O于点D.
(1)如图2,当PD∥AB时,求PD的长;
(2)如图3,当弧DC=弧AC时,延长AB至点E,使BE=AB,连接DE.
①求证:DE是⊙O的切线;
②求PC的长.
【答案】(1)2;(2)①证明见解析;②3﹣3.
【解析】
试题分析:(1)根据题意首先得出半径长,再利用锐角三角三角函数关系得出OP,PD的长;
(2)①首先得出△OBD是等边三角形,进而得出∠ODE=∠OFB=90°,求出答案即可;
②首先求出CF的长,进而利用直角三角形的性质得出PF的长,进而得出答案.
试题解析:(1)如图2,连接OD,
∵OP⊥PD,PD∥AB,
∴∠POB=90°,
∵⊙O的直径AB=12,
∴OB=OD=6,
在Rt△POB中,∠ABC=30°,
∴OP=OB•tan30°=6×=2,
在Rt△POD中,
PD===;
(2)①如图3,连接OD,交CB于点F,连接BD,
∵,
∴∠DBC=∠ABC=30°,
∴∠ABD=60°,
∵OB=OD,
∴△OBD是等边三角形,
∴OD⊥FB,
∵BE=AB,
∴OB=BE,
∴BF∥ED,
∴∠ODE=∠OFB=90°,
∴DE是⊙O的切线;
②由①知,OD⊥BC,
∴CF=FB=OB•cos30°=6×=3,
在Rt△POD中,OF=DF,
∴PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),
∴CP=CF﹣PF=3﹣3.
考点:圆的综合题下载本文