视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
中考数学分类讨论题型--学生版20180614
2025-09-24 00:12:05 责编:小OO
文档
分类讨论题型       姓名           20170314

基础练习

一、选择题

1.若等腰三角形的一个内角为50度,则其他两个内角为(  ) 

   A.500 ,80o       B.650,  650          C.500 ,650          D.500,800或 650,650

2.若   A.5或-1   B.-5或1;  C.5或1  D.-5或-1

3.等腰三角形的一边长为3cm,周长是13cm,那么这个等腰三角形的腰长是(  )

    A.5cm         B.3cm        C.5cm或3cm        D.不确定

4.若⊙O的弦 AB所对的圆心角∠AOB=60°,则弦AB所对的圆周角的度数为(   )

   A.300             B、600             C.1500                D.300或 1500

5.一次函数y=kx+b,当-3≤x≤l时,对应的y值为l≤y≤9, 则kb值为(   )

A.14       B.-6     C.-4或21     D.-6或14

二、填空题    6.已知_______. 

7.已知⊙O的半径为5cm,AB、CD是⊙O的弦,且  AB=8cm,CD=6cm,AB∥CD,则AB与CD之间的距离为__________.

8.矩形一个角的平分线分其一边为1cm和3 cm两部分,则此矩形的面积为_         .

9.等腰三角形的一个内角为70°,则其它角为______.

10 已知等腰三角形一腰上的中线将它的周长分为9和12两部分,则三角形腰长为__   __,底边长为_______.

11 矩形ABCD,AD=3,AB=2,则以矩形的一边所在直线为轴旋转一周所得到的圆柱的表面积为__     ___.

专题分类

一、点的位置的确定

1、在△ABC中,∠ABC=90°,AB=4,BC=3,O是边AC上的一个动点,以点O为圆心作半圆,与边AB相切于点D,交线段OC于点E,作EP⊥ED,交射线AB于点P,交射线CB于点F。

(1)如图8,求证:△ADE∽△AEP;

(2)设OA=x,AP=y,求y关于x的函数解析式;

(3)当BF=1时,求线段AP的长.

二、相似的对应元素的确定

2、如图,在矩形ABCD中,AB=3,BC=2,点A的坐标为(1,0),以CD为直径,在矩形ABCD内作半圆,点M为圆心.设过A、B两点抛物线的解析式为y=ax2+bx+c,顶点为点N.

(1)求过A、C两点直线的解析式;

(2)当点N在半圆M内时,求a的取值范围;

(3)过点A作⊙M的切线交BC于点F,E为切点,当以点A、F,B为顶点的三角形与以C、N、M为顶点的三角形相似时,求点N的坐标.

三、边角的确定

1.抛物线经过点A (1,0).

⑴  求b的值;

⑵  设P为此抛物线的顶点,B(a,0)(a≠1)为抛物线上的一点,Q是坐标平面内的点.如果以A、B、P、Q为顶点的四边形为平行四边形,试求线段PQ的长.

2如图,已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A,B关于y轴的对称点分别为点A′,B′.

(1)求m的值;

(2)求抛物线E2的函数解析式;

(3)在第一象限内,抛物线E1上是否存在点Q,使得以点Q,B,B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.

3、如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.

(1)求抛物线的解析式;

(2)求点D的坐标;

(3)若点M在抛物线上,点N在x轴上,是否存在以A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.

四、面积问题中的讨论

1、(2015·攀枝花)如图,已知抛物线y=-x2+bx+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,抛物线的对称轴与抛物线交于点P,与直线BC相交于点M,连接PB.

(1)求抛物线的解析式;

(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△BCD的面积最大?若存在,求出点D坐标及△BCD面积的最大值;若不存在,请说明理由;

(3)在(1)中的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.

2、如图,已知正方形OABC的边长为2,顶点A,C分别在x轴,y轴的正半轴上,点E是BC的中点,F是AB延长线上一点且FB=1.

(1)求经过点O,A,E三点的抛物线解析式;

(2)点P在抛物线上运动,当点P运动到什么位置时△OAP的面积为2,请求出点P的坐标;

(3)在抛物线上是否存在一点Q,使△AFQ是等腰直角三角形?若存在直接写出点Q的坐标;若不存在,请说明理由.

练习:

1.如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.

(1)当t为何值时,PQ∥BC?

(2)设四边形PQCB的面积为y,求y关于t的函数关系式;

(3)四边形PQCB面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由;

(4)当t为何值时,△AEQ为等腰三角形?(直接写出结果)下载本文

显示全文
专题