视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
高中数学立体几何部分定理
2025-09-24 06:44:53 责编:小OO
文档
高中数学立体几何部分定理

等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面

1、按是否共面可分为两类:

(1)共面: 平行、 相交 

(2)异面:

异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。 

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为 ( 0°,90° ) esp.空间向量法

两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法

2、若从有无公共点的角度看可分为两类:

(1)有且仅有一个公共点——相交直线;(2)没有公共点—— 平行或异面

直线和平面的位置关系: 直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行

①直线在平面内——有无数个公共点

②直线和平面相交——有且只有一个公共点 

直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。

esp.空间向量法(找平面的法向量)

规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角 

由此得直线和平面所成角的取值范围为 [0°,90°]

最小角定理: 斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角

三垂线定理及逆定理: 如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直

esp.直线和平面垂直

直线和平面垂直的定义:如果一条直线a和一个平面 内的任意一条直线都垂直,我们就说直线a和平面 互相垂直.直线a叫做平面 的垂线,平面 叫做直线a的垂面。

直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

③直线和平面平行——没有公共点

直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

两个平面的位置关系:

(1)两个平面互相平行的定义:空间两平面没有公共点

(2)两个平面的位置关系: 

两个平面平行-----没有公共点; 两个平面相交-----有一条公共直线。

a、平行

两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。

b、相交

二面角

(1) 半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

(2) 二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为 [0°,180°]

(3) 二面角的棱:这一条直线叫做二面角的棱。

(4) 二面角的面:这两个半平面叫做二面角的面。

(5) 二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

(6) 直二面角:平面角是直角的二面角叫做直二面角。

esp. 两平面垂直

两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为 ⊥ 

两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直

两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。

Attention:

二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)

高中数学立体几何模块公理定理汇编

公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.

,且, .(作用:证明直线在平面内)

公理2 过不在一条直线上的三个点,有且只有一个平面.(作用:确定平面)

推论 ①直线与直线外一点确定一个平面.

②两条相交直线确定一个平面.

③两条平行直线确定一个平面.

公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.

,且=,且.(作用:证明三点/多点共线)

公理4 平行于同一条直线的两条直线互相平行.(平行线的传递性)

空间等角定理 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.

线面平行判定定理 平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.

面面平行判定定理 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.

推论 一个平面内两条相交直线与另一个平面内的两条直线分别平行,则这两个平面平行.

线面平行性质定理 一条直线与一个平面平行,则过这条直线的任意平面与此平面的交线与该直线平行.

面面平行性质定理 如果两个平行平面同时和第三个平面相交,则它们的交线平行.

线面垂直判定定理 一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面平行.

三垂线定理 如果平面内一条直线和平面的一条斜线的射影垂直,则它和这条斜线垂直.

逆定理 如果平面内一条直线与平面的一条斜线垂直,则它和这条直线的射影垂直.

射影定理 从平面外一点出发的所有斜线段中,若斜线段长度相等则射影相等,斜线段较长则射影较长,斜线段较短则射影较短.

面面垂直判定定理 一个平面过另一个平面的垂线,则这两个平面垂直.

线面垂直性质定理1 如果一条直线垂直于一个平面,则它垂直于平面内的所有直线.

线面垂直性质定理2 垂直于同一个平面的两条直线平行.

面面垂直性质定理1 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.

面面垂直性质定理2 两个平面垂直,过一个平面内一点与另一个平面垂直的直线在该平面内.下载本文

显示全文
专题