磁电式传感器利用电磁感应原理将输入运动速度变换成感应电势输出,是一种有源传感器。它不需要辅助电源,就能把被测对象的机械能转换成易于测量的电信号。并且,它具有双向转换特性,利用其逆转换效应可构成力(矩)发生器和电磁激振器等。有时磁电式传感器也称作电动式或感应式传感器, 它只适合进行动态测量。由于它有较大的输出功率,故配用电路较简单;零位及性能稳定;工作频带一般为10~1000Hz。
磁电式传感器的构成
磁电式传感器构成:磁路系统、线圈
1、磁路系统
由它产生恒定直流磁场。为了减小传感器的体积,一般都采用永久磁铁;
2、线圈
由它运动切割磁力线产生感应电动势。作为一个完整的磁电式传感器,除了磁路系统和线圈外,还有一些其它元件,如壳体、支承、阻尼器、接线装置等。
磁电式传感器的原理及特性
(1)工作原理
磁电式传感器的工作原理如图1 所示,它主要由旋转的触(被等分的齿轮盘,上面有多齿或缺齿)和相对静止的感应线圈两部分组成。当柴油机运行时,触与传感器之间的间隙周期性变化,磁通量也会以同样的周期变化,从而在线圈中感应出近似正弦波的电压信号。
(2)输出特性
由磁电式传感器工作原理可知,其产生的交流电压信号的频率与齿轮转速和齿数成正比。在齿数确定的情况下,传感器线圈输出的电压频率正比于齿轮的转速,其关系为
式中,n 为发动机转速,r/ s;z 为触被等分的齿数;f 为磁电式传感器的输出信号频率,Hz 。
磁电式传感器的输出电压不仅与传感器和触间的间隙( d ) 有关,而且与n 有关。为了设计合理的磁电式传感器信号处理模块,本研究在不同的d 以及n 条件下,通过大量的试验测出传感器的输出电压特性。
图2 为不同的n 条件下,7 X 传感器输出峰值电压与d 的关系;图3 为在不同的d 条件下,7 X 传感器输出峰值电压与n 的关系。48X 传感器输出峰值电压信号特征也如此。从图中可看出,在同一d 条件下,传感器输出的峰值电压随n 升高而增大;在同一n 条件下,d 越小, 其输出峰值电压越高。由此可以拟合出传感器的输出峰值电压特性为
式中, V 为传感器输出峰值电压,V;n 为发动机转速,r/ s;d 为传感器与触间的间隙,mm;K 为与传感器有关的参数。
磁电式传感器的实验
一、实验原理:
磁电式传感器是一种能将非电量的变化转为感应电动势的传感器,所以也称为感应式传感器。根据电磁感应定律,ω匝线圈中的感应电动势e的大小取决于穿过线圈的磁通?的变化率:霍尔式传感器是一种磁电传感器,它利用材料的霍尔效应而制成。该传感器是由工作在两个环形磁钢组成的梯度磁场和位于磁场中的霍尔元件组成。当霍尔元件通以恒定电流时,霍尔元件就有电势输出。霍尔元件在梯度磁场中上、下移动时,输出的霍尔电势V取决于其在磁场中的位移量X,所以测得霍尔电势的大小便可获知霍尔元件的静位移。
二、实验所需部件:
直流稳压电源、电桥、霍尔传感器、差动放大器、电压表、测微头。
三、实验步骤:
1.了解霍尔传感器的结构和在实验仪上的位置,熟悉实验面板上霍尔片的符号。霍尔片安装在实验仪的振动圆盘上,两个半圆形永久磁钢固定在实验仪的顶板上,二者组成霍尔式传感器。
2.差动放大器调零。之后关闭电源,放大器增益调到最小。
3.装好测微头,调节它带动振动台位移,使霍尔片置于半圆形磁钢上下正中位置。打开电源,调节WD或微调测微头使电压表示数为0。
4.以此为起点,向上和向下位移测微头,每次0.5mm,记录输出数据,分别填入相应的表格中。
四、注意事项:
1.实验前应检查实验接插线是否完好,连接电路时应尽量使用较短的接插线,以避免引入干扰。
2.接插线插入插孔,以保证接触良好,切忌用力拉扯接插线尾部,以免造成线内导线断裂。
3.稳压电源不要对地短路。所有单元电路的地均须与电源地相连。
4.一旦调整好,测量过程中不能移动磁路系统。
5.直流激励电压须严格限定在2V,绝对不能任意加大,以免损坏霍尔元件。
磁电式传感器的技术参数
1. 输出波形:近似于正弦波
2. 输出信号幅值:当传感器铁芯和被测齿轮齿顶间间隙&=0.5mm,齿数z=60,齿轮模数m=2及40转/分时,输出电压V≥70mV
3. 测量范围:0-49999Hz
4. 使用时间:连续使用
5. 环境温度: -20 ~ 65 ℃
6. 相对湿度:≤ 65%
7. 输出尺寸:二线制(双芯屏蔽线)
8. 输出信号:4-20MA
磁电式传感器的应用
磁电式传感器主要用于振动测量。其中惯性式传感器不需要静止的基座作为参考基准,它直接安装在振动体上进行测量,因而在地面振动测量及机载振动监视系统中获得了广泛的应用。
一, 传统的磁检测中首先被采用的是电感线圈为敏感元件。特点正是无须在线圈中通电,一般仅对运动中的永磁体或电流载体起敏感作用。后来发展为用线圈组成振荡槽路的。 如探雷器, 金属异物探测器,测磁通的磁通计等. (磁通门,振动样品磁强计)。
二, 霍尔传感器
霍尔传感器是依据霍尔效应制成的器件。
霍尔效应:通电的载体在受到垂直于载体平面的外磁场作用时,则载流子受到洛伦兹力的作用, 并有向两边聚集的倾向,由于自由电子的聚集(一边多一边必然少)从而形成电势差, 在经过特殊工艺制备的半导体材料这种效应更为显著。从而形成了霍尔元件。早期的霍尔效应的材料Insb(锑化铟)。为增强对磁场的敏感度,在材料方面半导体IIIV 元素族都有所应用。近年来,除Insb之外,有硅衬底的,也有砷化镓的。霍尔器件由于其工作机理的原因都制成全桥路器件,其内阻大约都在150Ω~500Ω之间。对线性传感器工作电流大约在2~10mA左右,一般采用恒流供电法。
Insb与硅衬底霍尔器件典型工作电流为10mA。而砷化镓典型工作电流为2 mA。作为低弱磁场测量,我们希望传感器自身所需的工作电流越低越好。(因为电源周围即有磁场,就不同程度引进误差。另外,目前的传感器对温度很敏感,通的电流大了,有一个自身加热问题。(温升)就造成传感器的零漂。这些方面除外附补偿电路外,在材料方面也在不断的进行改进。
霍尔传感器主要有两大类,一类为开关型器件,一类为线性霍尔器件,从结构形式(品种)及用量、产量前者大于后者。霍尔器件的响应速度大约在1us 量级。
三,磁阻传感器
磁阻传感器,磁敏二极管等是继霍尔传感器后派生出的另一种磁敏传感器。采用的半导体材料于霍尔大体相同。但这种传感器对磁场的作用机理不同,传感器内载流子运动方向与被检磁场在一平面内。(顺便提醒一点,霍尔效应于磁阻效应是并存的。在制造霍尔器件时应努力减少磁阻效应的影响,而制造磁阻器件时努力避免霍尔效应(在计算公式中,互为非线性项)。在磁阻器件应用中,温度漂移的控制也是主要矛盾,在器件制备方面,磁阻器件由于与霍尔不同,因此,早期的产品为单只磁敏电阻。由于温度漂移大,现在多制成单臂(两只磁敏电阻串联)主要是为补偿温度漂移。目前也有全桥产品,但用法(目的)与霍尔器件略有差异。据报导磁阻器件的响应速度同霍尔1uS量级。
磁阻传感器由于工作机理不同于霍尔,因而供电也不同,而是采用恒压源(但也需要一定的电流)供电。当后续电路不同对供电电源的稳定性及内部噪声要求高低有所不同。
四, 磁敏器件应用的问题
磁敏器件(单元)体积问题:
在磁敏元件作为检测磁场而设计和制造的 ,一般检测的概念是:测量磁场中某一点的磁性。作为点的定义在几何学中是无限小的。在磁场检测中,由于磁场的面积、体积、缝隙大小等都是有限面积(尺寸),因此我们希望磁敏元件之面积与被测磁场面积相比也应该是越小越准确。在磁场成像的技术中,元件体积越小,在相同的面积内采集的像素就愈多。分辨率、清晰度越高。在表面磁场测量与多级磁体的检测中,在磁栅尺中,必然有如此要求。从磁敏元件工作机理看,为提高灵敏度在几何形状处于磁场中的几何尺寸都有相应要求,这与“点”的要求是相矛盾的。在与国外专家技术交流中得知,1999年俄罗斯专家说他们制成了体积0 .6mm得探头(是几个研究所合作搞成的)。美国也有相应的产品,售价约70美元一只。是否是目前最高水平,未见其它报导。
在二维场和三维场的测量中探头的封装垂直度的要求也有很大的难度。>下载本文