视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
2017年浙江省高考数学试卷
2025-09-24 06:33:42 责编:小OO
文档
2017年浙江省高考数学试卷

 

一、选择题(共10小题,每小题4分,满分40分)

1.(4分)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=(  )

A.(﹣1,2)    B.(0,1)    C.(﹣1,0)    D.(1,2)

2.(4分)椭圆+=1的离心率是(  )

A.    B.    C.    D.

3.(4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是(  )

A.+1    B.+3    C.+1    D.+3

4.(4分)若x、y满足约束条件,则z=x+2y的取值范围是(  )

A.[0,6]    B.[0,4]    C.[6,+∞)    D.[4,+∞)

5.(4分)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m(  )

A.与a有关,且与b有关    B.与a有关,但与b无关

C.与a无关,且与b无关    D.与a无关,但与b有关

6.(4分)已知等差数列{an}的公差为d,前n项和为Sn,则“d>0”是“S4+S6>2S5”的(  )

A.充分不必要条件    B.必要不充分条件

C.充分必要条件    D.既不充分也不必要条件

7.(4分)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是(  )

A.    B.    C.    D.

8.(4分)已知随机变量ξi满足P(ξi=1)=pi,P(ξi=0)=1﹣pi,i=1,2.若0<p1<p2<,则(  )

A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)    B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)

C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)    D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)

9.(4分)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则(  )

A.γ<α<β    B.α<γ<β    C.α<β<γ    D.β<γ<α

10.(4分)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=•,I2=•,I3=•,则(  )

A.I1<I2<I3    B.I1<I3<I2    C.I3<I1<I2    D.I2<I1<I3

 

二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分

11.(4分)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6,S6=     .

12.(6分)已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2=     ,ab=     .

13.(6分)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=     ,a5=     .

14.(6分)已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是     ,cos∠BDC=     .

15.(6分)已知向量、满足||=1,||=2,则|+|+|﹣|的最小值是     ,最大值是     .

16.(4分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有     种不同的选法.(用数字作答)

17.(4分)已知a∈R,函数f(x)=|x+﹣a|+a在区间[1,4]上的最大值是5,则a的取值范围是     .

 

三、解答题(共5小题,满分74分)

18.(14分)已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).

(Ⅰ)求f()的值.

(Ⅱ)求f(x)的最小正周期及单调递增区间.

19.(15分)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.

(Ⅰ)证明:CE∥平面PAB;

(Ⅱ)求直线CE与平面PBC所成角的正弦值.

20.(15分)已知函数f(x)=(x﹣)e﹣x(x≥).

(1)求f(x)的导函数;

(2)求f(x)在区间[,+∞)上的取值范围.

21.(15分)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q.

(Ⅰ)求直线AP斜率的取值范围;

(Ⅱ)求|PA|•|PQ|的最大值.

22.(15分)已知数列{xn}满足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),证明:当n∈N*时,

(Ⅰ)0<xn+1<xn;

(Ⅱ)2xn+1﹣xn≤;

(Ⅲ)≤xn≤.

 下载本文

显示全文
专题