视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
高中数学数列试题
2025-09-24 06:34:48 责编:小OO
文档
1.{an}是首项a1=1,公差为d=3的等差数列,如果an=2 005,则序号n等于(     ).

A.667                B.668                C.669                D.670

2.在各项都为正数的等比数列{an}中,首项a1=3,前三项和为21,则a3+a4+a5=(     ).

A.33                B.72                C.84                D.1

3.如果a1,a2,…,a8为各项都大于零的等差数列,公差d≠0,则(     ). 

A.a1a8>a4a5        B.a1a8<a4a5        C.a1+a8<a4+a5    D.a1a8=a4a5

4.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则

|m-n|等于(     ).

A.1                B.                C.                D.  

5.等比数列{an}中,a2=9,a5=243,则{an}的前4项和为(     ).

A.81              B.120              C.168              D.192

6.若数列{an}是等差数列,首项a1>0,a2 003+a2 004>0,a2 003·a2 004<0,则使前n项和Sn>0成立的最大自然数n是(     ).

A.4 005                B.4 006                C.4 007                D.4 008 

7.已知等差数列{an}的公差为2,若a1,a3,a4成等比数列, 则a2=(     ).

A.-4                B.-6                C.-8                D. -10

8.设Sn是等差数列{an}的前n项和,若=,则=(     ).

A.1                B.-1                C.2                D. 

9.已知数列-1,a1,a2,-4成等差数列,-1,b1,b2,b3,-4成等比数列,则的值是(     ).

A.                B.-                C.-或            D. 

10.在等差数列{an}中,an≠0,an-1-+an+1=0(n≥2),若S2n-1=38,则n=(     ).

A.38                B.20                C.10                D.9

二、填空题

11.设f(x)=,利用课本中推导等差数列前n项和公式的方法,可求得f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值为                     .

12.已知等比数列{an}中,

(1)若a3·a4·a5=8,则a2·a3·a4·a5·a6=                .

(2)若a1+a2=324,a3+a4=36,则a5+a6=                .

(3)若S4=2,S8=6,则a17+a18+a19+a20=                  .

13.在和之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为    .

14.在等差数列{an}中,3(a3+a5)+2(a7+a10+a13)=24,则此数列前13项之和为     .

15.在等差数列{an}中,a5=3,a6=-2,则a4+a5+…+a10=              .

16.设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)=         ;当n>4时,f(n)=       . 

三、解答题

17.(1)已知数列{an}的前n项和Sn=3n2-2n,求证数列{an}成等差数列.

(2)已知,,成等差数列,求证,,也成等差数列.

18.设{an}是公比为 q 的等比数列,且a1,a3,a2成等差数列.

(1)求q的值;

(2)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.

19.数列{an}的前n项和记为Sn,已知a1=1,an+1=Sn(n=1,2,3…).

求证:数列{}是等比数列.

20.已知数列{an}是首项为a且公比不等于1的等比数列,Sn为其前n项和,a1,2a7,3a4成等差数列,求证:12S3,S6,S12-S6成等比数列.

一、选择题

1.C

解析:由题设,代入通项公式an=a1+(n-1)d,即2 005=1+3(n-1),∴n=699.

2.C

解析:本题考查等比数列的相关概念,及其有关计算能力.

设等比数列{an}的公比为q(q>0),由题意得a1+a2+a3=21,

即a1(1+q+q2)=21,又a1=3,∴1+q+q2=7.

解得q=2或q=-3(不合题意,舍去),

∴a3+a4+a5=a1q2(1+q+q2)=3×22×7=84.

3.B.

解析:由a1+a8=a4+a5,∴排除C.

又a1·a8=a1(a1+7d)=a12+7a1d,

∴a4·a5=(a1+3d)(a1+4d)=a12+7a1d +12d2>a1·a8.

4.C

解析:

解法1:设a1=,a2=+d,a3=+2d,a4=+3d,而方程x2-2x+m=0中两根之和为2,x2-2x+n=0中两根之和也为2,

∴a1+a2+a3+a4=1+6d=4,

∴d=,a1=,a4=是一个方程的两个根,a1=,a3=是另一个方程的两个根.

∴,分别为m或n,

∴|m-n|=,故选C.

解法2:设方程的四个根为x1,x2,x3,x4,且x1+x2=x3+x4=2,x1·x2=m,x3·x4=n.

由等差数列的性质:若γ+s=p+q,则aγ+as=ap+aq,若设x1为第一项,x2必为第四项,则x2=,于是可得等差数列为,,,,

∴m=,n=,

∴|m-n|=.

5.B

解析:∵a2=9,a5=243,=q3==27,

      ∴q=3,a1q=9,a1=3,

      ∴S4===120.

6.B

解析:

解法1:由a2 003+a2 004>0,a2 003·a2 004<0,知a2 003和a2 004两项中有一正数一负数,又a1>0,则公差为负数,否则各项总为正数,故a2 003>a2 004,即a2 003>0,a2 004<0.

∴S4 006==>0,

∴S4 007=·(a1+a4 007)=·2a2 004<0,

故4 006为Sn>0的最大自然数. 选B.

解法2:由a1>0,a2 003+a2 004>0,a2 003·a2 004<0,同解法1的分析得a2 003>0,a2 004<0,

∴S2 003为Sn中的最大值.

∵Sn是关于n的二次函数,如草图所示,

∴2 003到对称轴的距离比2 004到对称轴的距离小,

∴在对称轴的右侧.

根据已知条件及图象的对称性可得4 006在图象中右侧零点B的左侧,4 007,4 008都在其右侧,Sn>0的最大自然数是4 006.

7.B

解析:∵{an}是等差数列,∴a3=a1+4,a4=a1+6,

又由a1,a3,a4成等比数列,

∴(a1+4)2=a1(a1+6),解得a1=-8,

∴a2=-8+2=-6.

8.A

解析:∵===·=1,∴选A.

9.A

解析:设d和q分别为公差和公比,则-4=-1+3d且-4=(-1)q4,

∴d=-1,q2=2,

∴==.

10.C

解析:∵{an}为等差数列,∴=an-1+an+1,∴=2an,

又an≠0,∴an=2,{an}为常数数列,

而an=,即2n-1==19,    

∴n=10.

二、填空题

11..

解析:∵f(x)=,

∴f(1-x)===,

∴f(x)+f(1-x)=+===.

设S=f(-5)+f(-4)+…+f(0)+…+f(5)+f(6),

则S=f(6)+f(5)+…+f(0)+…+f(-4)+f(-5),

∴2S=[f(6)+f(-5)]+[f(5)+f(-4)]+…+[f(-5)+f(6)]=6,

∴S=f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)=3.

12.(1)32;(2)4;(3)32.

解析:(1)由a3·a5=,得a4=2,

∴a2·a3·a4·a5·a6==32.

(2),

∴a5+a6=(a1+a2)q4=4.

(3),

∴a17+a18+a19+a20=S4q16=32.

13.216.

解析:本题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与,同号,由等比中项的中间数为=6,插入的三个数之积为××6=216.

14.26.

解析:∵a3+a5=2a4,a7+a13=2a10,

∴6(a4+a10)=24,a4+a10=4,

∴S13====26.

15.-49.

解析:∵d=a6-a5=-5,

∴a4+a5+…+a10

=7(a5+2d)

=-49.

16.5, (n+1)(n-2).

解析:同一平面内两条直线若不平行则一定相交,故每增加一条直线一定与前面已有的每条直线都相交,∴f(k)=f(k-1)+(k-1).

由f(3)=2,

f(4)=f(3)+3=2+3=5,

f(5)=f(4)+4=2+3+4=9,

……

f(n)=f(n-1)+(n-1),

相加得f(n)=2+3+4+…+(n-1)=(n+1)(n-2).

三、解答题

17.分析:判定给定数列是否为等差数列关键看是否满足从第2项开始每项与其前一项差为常数.

证明:(1)n=1时,a1=S1=3-2=1,

当n≥2时,an=Sn-Sn-1=3n2-2n-[3(n-1)2-2(n-1)]=6n-5,

n=1时,亦满足,∴an=6n-5(n∈N*).

首项a1=1,an-an-1=6n-5-[6(n-1)-5]=6(常数)(n∈N*),

∴数列{an}成等差数列且a1=1,公差为6.

(2)∵,,成等差数列,

 ∴=+化简得2ac=b(a+c).

+=====2·,

∴,,也成等差数列.

18.解:(1)由题设2a3=a1+a2,即2a1q2=a1+a1q,

∵a1≠0,∴2q2-q-1=0,

∴q=1或-.

(2)若q=1,则Sn=2n+=.

当n≥2时,Sn-bn=Sn-1=>0,故Sn>bn.

若q=-,则Sn=2n+(-)=.

当n≥2时,Sn-bn=Sn-1=,

故对于n∈N+,当2≤n≤9时,Sn>bn;当n=10时,Sn=bn;当n≥11时,Sn<bn.

19.证明:∵an+1=Sn+1-Sn,an+1=Sn,

∴(n+2)Sn=n(Sn+1-Sn),整理得nSn+1=2(n+1) Sn,

所以=.

故{}是以2为公比的等比数列.

20.证明:由a1,2a7,3a4成等差数列,得4a7=a1+3a4,即4 a1q6=a1+3a1q3,

        变形得(4q3+1)(q3-1)=0,

        ∴q3=-或q3=1(舍).

        由===;

        =-1=-1=1+q6-1=;

       得=.

       ∴12S3,S6,S12-S6成等比数列.下载本文

显示全文
专题