一、选择题
1.已知,则满足该条件的集合有 ( )
A.个 个 个 个
2.“”是“”的 ( )
A.充要条件 充分不必要条件
C.必要不充分条件 既不充分也不必要条件
3.函数的定义域是 ( )
A.
4.下列函数在定义域内为单调递增函数的是 ( )
A.
5.设,,那么下列各式中正确的是 ( )
A.
6.已知,则等于 ( )
A.
7.双曲线的两条渐近线方程为 ( )
A.
8.下列四个命题中,正确的一个命题是 ( )
A.若、是异面直线,、是相交直线,则、是异面直线
B.若两条直线与同一平面所成的角相等,则该两条直线平行
C.若两个平行平面与第三个平面相交,则交线平行
D.三个平面两两相交,有三条交线,则这三条交线互相平行
9.运用空间想象力判定下列四个图中不能折成正方体的是 ( )
10.已知直线的方程为,则此直线的倾斜角和必定经过的点的坐标分别是 ( )
A., ,
C., ,
11.在中,若,则此三角形形状为 ( )
A.锐角三角形 直角三角形 钝角三角形 等边三角形
12.已知为第二象限角,则等于 ( )
A.
13.在三角形中,点为的中点,若,,则等于 ( )
A.
14.直线与圆的位置关系是 ( )
A.相切 相离 相交但不过圆 相交且过圆心
15.不等式的解集为 ( )
A.
C.
16.等比数列的前四项依次为,,,,则与的比是 ( )
A.
17.若,要使取得最大值,则必须等于 ( )
A.
18.如图所示,函数的一部分图像,、是图像上的一个最高点和最低点,为坐标原点,则为 ( )
A.
B.
C.
D.
二、填空题
19.
不等式的解集为 ;
20.如右图所示,用火柴摆成正方形图形,则第个图形需用火柴棒 根;
21.若函数,则 ;
22.若椭圆的焦点在轴上,离心率为,则 ;
23.已知,则 ;
24.两直线,之间的距离为 ;
25.若的展开式中,第项为常数项,则 ;
26.函数在上递增,则的取值范围是 ;
三、解答题
27.计算:;
28.在中,,,,求边的长;
29.在等差数列中,公差,是,的等比中项,且,求此数列前项的和;
30.求与直线垂直,且与圆相切的直线方程;
31.已知函数,求函数的最值和最小正周期;
32.如图所示,底面边长为的正四棱锥的各侧面均为正三角形,是正四棱锥的高,求:(1)异面直线与的夹角;(2)侧面与底面所成角的正切值;
33.蒙牛公司为促销,推出免费抽奖活动,每位顾客凭超市购物小票,抽奖次,抽奖箱内有十个黄球(每个分)和十个白球(每个分),随机抽出十个球计算总分,(1)共有多少种不同的结果?(2)摸到分有多少种可能?(3)摸到分的概率是多少?
34.已知抛物线的顶点在原点,对称轴是轴,抛物线上点到焦点的距离等于,(1)求抛物线的方程;(2)设直线与抛物线相交于、两点,弦的长为,求的面积;
35.下载本文