一、拓展提优试题
1.是三位数,若a是奇数,且是3的倍数,则最小是 .
2.10个连续的自然数从小到大排列,若最后6个数的和比前4个数的和的2倍大15,则这10个数中最小的数是 .
3.某列车通过285米的隧道用24秒,通过245米的大桥用22秒.若该车与另一列长135米,速度为每秒10米的货车相遇,两列车从碰上到全错开用 秒.
4.少先队员计划做一些幸运星送给幼儿园的小朋友.如果每人做10个,还差6个没完成计划;如果其中4人各做8个,其余每人各做12个,就正好完成计划.问一共计划做 颗幸运星.
5.空心圆和实心圆排成一行如下图所示:
○●○●●○●●●○●○●●○●●●○●○●●○●●●…
在前200个圆中有 个空心圆.
6.如图所示,5个相同的两位数相加得两位数,其中相同的字母表示相同的数字,不同的字母表示不同的数字,则= .
7.某冷饮店推出“夏日冰饮第二杯半价”活动,小刚买了2杯饮料共花了13元5角.那么一杯饮料的原价是 元.
8.学校组织春游,租船让学生划.每条船坐3人,有16人没有船坐;如果每条船坐5人,则有一条船上差4人.学校共有学生 人.
9.(7分)后羿朝三个箭靶分别射了三支箭,如图:他在第一个箭靶上得了29分,第二个箭靶上得了43分.请问他在第三个箭靶上得了 分.
10.喜羊羊等一群小羊割了一堆青草准备过冬吃.他们算了一下,平均每只小羊割了45千克.如果除了他们自己外,再分给慢羊羊村长一份,那么每只小羊可分得36千克.回到村里,懒羊羊走来,也要分一份.这样一来,每只小羊就只能分得 千克草了.
11.如图,将一张圆形纸片对折,再对折,又对折,…,到第六次对折后,得到的扇形的面积是5,那么,圆形纸片的面积是 .
12.当小红3岁时,妈妈的年龄和小红今年的年龄相同;当妈妈78岁时,小红的年龄和妈妈今年的年龄相同.妈妈今年 岁.
13.(15分)如图,小红和小丽的家分别在电影院的正西和正东方向,某日她们同时从自己家出发,小红每分钟走52米,小丽每分钟走70米,两人同时到达电影院.看完电影后,小红先回家,速度不变,4分钟后小丽也开始往家走,每分钟走90米,两人同时到家.求两人的家相距多少米.
14.甲、乙二人从同一天开始工作,公司规定:甲每工作3天后休息1天,乙每工作7天后连续休息3天,则在开始的前1000天中,甲、乙同一天休息的日子有 天.
.
15.洋洋从家出发去学校,若每分钟走60米,则它6:53到达学校,若每分钟走75米,则她6:45到达学校,洋洋从家里出发的时刻是 .
【参】
一、拓展提优试题
1.【分析】要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,然后根据能被3整除的数的特征确定c的最小值即可.
解:要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,
又因为是3的倍数,所以可得:1+0+c的和是3的倍数,
所以,c最小是2,
则,最小是102.
故答案为:102.
【点评】本题考查了能被3整除的数的特征的灵活应用,关键是确定百位和十位的数字.
2.【分析】本题主要考察等差数列.
解:设最小的数为x,则剩余自然数依次为x+1,x+2,…,x+9,
由题可得2(4x+1+2+3)+15=6x+4+5+6+7+8+9,
化简后是8x+27=6x+39
∴x=6,
【点评】本题可以借助列方程,设最小的数为x,一一用x表示其他连续自然数,根据等量关系就可求解.
3.解:列车速度为:
(285﹣245)÷(24﹣22)
=40÷2,
=20(米);
列车车身长为:
20×24﹣285
=480﹣285,
=195(米);
列车与货车从相遇到离开需:
(195+135)÷(20+10),
=330÷30,
=11(秒).
答:列车与货车从相遇到离开需11秒.
4.解:[(12﹣8)×4+6]÷(12﹣10),
=[16+6]÷2,
=22÷2,
=11(人);
10×11+6=116(个);
答:一共计划做116颗幸运星.
故答案为:116.
5.解:200÷9=22…2,
所以22×3+1=67(个),
答:前200个圆中有67个空心圆.
故答案为:67.
6.【分析】根据整数加法竖式计算的方法进行推算即可.
解:根据题意,由加法竖式可得:
个位上,5×B的末尾还是B,由5×0=0,5×5=25可得:B=0或B=5;
假设B=0,那么十位上,5×A=M,M要小于10,只有当A=1时,5×1=5,符合;
所以,A=1,B=0;
由以上推算可得:
假设B=5时,5×5=25,向十位进2;
十位上,5×A+2=M,M要小于10,只有当A=1时,5×1+2=7,符合;
所以,A=1,B=5;
由以上推算可得:
因此两位数是:10或15.
故答案为:10或15.
【点评】推算过程中,本题的关键是末尾数字相同,然后再进一步解答即可.
7.【分析】把第一杯饮料的原价看作单位“1”,则第二杯饮料的价钱是第一杯的,由题意可知:第一杯饮料价钱的(1+)是13.5元,根据已知一个数的几分之几是多少,求这个数,用除法解答.
解:13.5÷(1+),
=13.5÷1.5,
=9(元);
答:一杯饮料的原价是9元;
故答案为:9.
【点评】解答此题的关键是:判断出单位“1”,进而根据已知一个数的几分之几是多少,求这个数,用除法解答.
8.解:船:(16+4)÷(5﹣3),
=20÷2,
=10(条);
学生:3×10+16=46(人);
答:学校共有学生46人.
故答案为:46.
9.【分析】这个箭靶共三个环,设最小的环为a分,中间环为b分,最外环为c分,得:
第一个靶得分为:2b+c=29①
第二个靶得分为:2a+c=43②
第三个靶得分为:a+b+c③
通过等量代换,解决问题.
解:设最小的环为a分,中间环为b分,最外环为c分,得:
第一个靶得分为:2b+c=29①
第二个靶得分为:2a+c=43②
第三个靶得分为:a+b+c③
由①+②得:2a+2b+2c=29+43=72
即a+b+c=36
即第三个靶的得分为36分.
答:他在第三个箭靶上得了36分
故答案为:36.
10.解:设割草的小羊有x只,则它们一共割草45x千克,
45x=36(x+1)
45x=36x+36
9x=36
x=4
45×4÷(4+1+1)
=180÷6
=30(千克)
答:这样一来,每只小羊就只能分得30千克草了.
故答案为:30.
11.【分析】把这张圆形纸片对折1次,折成的角是以这张圆形纸片的圆心为顶点,两条半径为边的平角,平角=180°,再对折1次,就是把平角平均分成2分,每份是90°,再对折1次,就是把90°的角再平均分成2份,每份是45°,第六次对折后,平均分成了(2×2×2×2×2×2)=份,得到的扇形的面积是圆面积的;由此解答即可.
解:5=320
答:圆形纸片的面积是320;
故答案为:320.
【点评】本题是考查简单图形的折叠问题,明确把圆对折6次后,得到的图形的面积是圆面积的.
12.【分析】设妈妈与小红的年龄差为x岁,则根据“当小红3岁时,妈妈的年龄和小红今年的年龄相同;”得出小红今年的年龄为:x+3岁;根据“当妈妈78岁时,小红的年龄和妈妈今年的年龄相同”得出小红现在的年龄为:78﹣x岁;根据小红的年龄+年龄差=妈妈的年龄,列出方程即可解决问题.
解:设妈妈与小红的年龄差为x岁,则小红现在的年龄是x+3岁,妈妈现在的年龄是78﹣x岁,根据题意可得方程:
x+3+x=78﹣x
2x+3=78﹣x
2x+x=78﹣3
3x=75
x=25
78﹣25=53(岁)
答:妈妈今年53岁.
故答案为:53.
【点评】设出年龄差,抓住年龄差不变,分别得出二人现在的年龄是解决本题的关键.
13.【分析】根据题意知:小丽第一次用的时间×第一次的速度=(第一次用的时间﹣4)×第二次用的速度,可设第一次用的时间是x小时,据此可求出用的时间,再根据路程=速度和×时间可求出两家的距离.据此解答.
解:设第一次相遇用的时间是x分钟
70x=90×(x﹣4)
70x=90x﹣360
90x﹣70x=360
20x=360
x=360÷20
x=18
(52+70)×18
=122×18
=2196(米)
答:两家相距2196米.
【点评】本题的重点是求出两人相遇时用的时间,再根据路程=速度和×时间进行解答.
14.【分析】甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么甲只要在4的倍数天休息就行了,
每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期,
每一周期有一天重合,那么100周期共有100天重合解:甲的休息天数为4的倍数,即4,8,12,…1000;
乙的休息日为:8,9,10,18,19,20,…,那么乙只要在4的倍数天休息就行了,
每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期
每一周期有一天重合,那么100周期共有100天重合.
故答案为:100.
【点评】本题主要考查了公约数与公倍数问题.关键是乙每工作10天才会有1天与甲的重合.
15.【分析】6时53分﹣6时45分=8分钟,设从家到学校若每分钟走60米,x分钟到学校,则若每分钟走75米,x﹣8分钟到学校,因为从家到学校的距离一定,根据“速度×时间=路程”列方程解答即可.
解:设从家到学校若每分钟走60米,x分钟到学校,
6时53分﹣6时45分=8分钟
60x=(x﹣8)×75
60x=75x﹣600
15x=600
x=40;
6时53分﹣40分=6时13分;
答:洋洋从家里出发的时刻是6:13.
故答案为:6:13.
【点评】此题考查列方程解应用题,本题关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.下载本文