一、教学目标:1、理解二次函数中参数a,b,c,h,k对图像的影响。2、领会二次函数图像平移的研究方法,并能迁移到其他函数图象的研究,从而提高识图和用图能力。3、培养学生数形结合的思想意识。
二、教学重点:二次函数的图像的平移变换规律及应用。
教学难点:领会二次函数图像移动的方法,探索平移对函数解析式的影响及如何利用平移变换律求函数解析式,并能把平移变换规律迁移到其它函数。
三、教学方法:逐层推进,问题探究
四、教学过程
(一)、导入新课
1、说出下列函数的开口方向、对称轴、顶点
(1) y = (x+2)2-1, (2) y = - (x-2)2+2 , (3) y = a (x+h)2+k
2、在初中,我们已经学习了二次函数,知道其图象为抛物线,并了解其图像的开口方向、对称轴、顶点等特征,本节课将进一步研究一般的二次函数的性质。
(二).问题探索
探索问题1:和的图像之间有什么关系?
实践探究1:在同一坐标系中做出下列函数的图像;; ;
观察发现1:1.二次函数y=ax2(a0)的图像可由的y=x2图像各点纵坐标变为原来的a倍得到.
2.a决定了图像的开口方向: a>o开口向上,a<0开口向下.
3. a决定了图像在同一直角坐标系中的开口大小:|a|越小图像开口就越大
巩固性训练一:下列二次函数图像开口,按从小到大的顺序排列为 (4),(2),(3),(1).
;;;
探索问题2: 和的图像之间有什么关系?
实践探究2:在同一坐标系中做出下列函数的图像: ; ;
观察发现2: 二次函数y=a(x+h)2+k (a0),a决定了二次函数图像的开口大小及方向; 而且“a正开口向上,a负开口向下”;|a|越大开口越小;
h决定了二次函数图像的左右平移,而且“h正左移,h负右移”;
k决定了二次函数图像的上下平移,而且“k正上移,k负下移”。
巩固性训练二:1.将二次函数y=3x2的图像平行移动,顶点移到(-3,2),则它的解析式为
Y=3(x+3) 2+2 。
2.二次函数y=f(x)与y=g(x)的图像开口大小相同,开口方向也相同,已知函数g(x)=x2+1,f(x)图像的顶点为(3,2),则f(x)的表达式为 Y=(x-3) 2+2 。
探索问题3:,和的图像之间有什么关系?
观察发现3:一般的,二次函数, 通过配方就可以得到它的恒等形式:。 从而知道,由的图像经过平移就可以得到。
发展性训练:1. 由y=3(x+2)2+4的图像经过怎样的平移变换,可以得到y=3x2的图像.
右移2单位,下移4单位
2. 把函数y=x2-2x的图像向右平移2个单位,再向下平移3个单位所得图像对应的函数解析式为 : Y =(x-2)2-2(x-2)-3 = x2- 6x+5 = (x-3)2-4 。
(三)、例题探析
例1、把二次函数的图象向上平移2个单位,再向左平移4个单位,得到二次函数的图象,求b、c的值.
分析 抛物线的顶点为(0,0),只要求出抛物线的顶点,根据顶点坐标的改变,确定平移后的函数关系式,从而求出b、c的值.
解 .向上平移2个单位,得到,再向左平移4个单位,得到,
其顶点坐标是,而抛物线的顶点为(0,0),则
解得
探索 把抛物线向上平移2个单位,再向左平移4个单位,得到抛物线,也就意味着把抛物线向下平移2个单位,再向右平移4个单位,得到抛物线.那么,本题还可以用更简洁的方法来解,请你试一试.
例2、 已知某二次函数的最大值为2,图像的顶点在直线y=x+1上,并且图象经过点(3,-1),求二次函数的解析式并说出该函数的图象是由的图象如何得到的?
分析:在解本例时,要充分利用题目中所给出的条件——最大值、顶点位置,从而可以将二次函数设成顶点式,再由函数图象过定点来求解出系数a.
解:∵二次函数的最大值为2,而最大值一定是其顶点的纵坐标,∴顶点的纵坐标为2.
又顶点在直线y=x+1上,所以,2=x+1,∴x=1.∴顶点坐标是(1,2).设该二次函数的解析式为,∵二次函数的图像经过点(3,-1),∴,解得a=-2.∴二次函数的解析式为,即y=-2x2+8x-7.
反思:在解题时,由最大值确定出顶点的纵坐标,再利用顶点的位置求出顶点坐标,然后设出二次函数的顶点式,最终解决了问题.因此,在解题时,要充分挖掘题目所给的条件,并巧妙地利用条件简捷地解决问题.
(四).课堂小结:1.a,h,k对二次函数y =a(x+h)2+k图像的影响。2. y = x2 与y =a(x+h)2+k 的图像变换规律。
(五).课后作业:习题2-4 A组中2、3、4
五、教学反思:下载本文