∫sin x dx = -cos x + C
∫cos x dx = sin x + C
∫tan x dx = ln |sec x | + C
∫cot x dx = ln |sin x | + C
∫sec x dx = ln |sec x + tan x | + C
∫csc x dx = ln |csc x – cot x | + C
∫sin ²x dx =1/2x -1/4 sin 2x + C
∫cos ²x dx = 1/2+1/4 sin 2x + C
∫tan²x dx =tanx -x+ C
∫cot ²x dx =-cot x-x+ C
∫sec ²x dx =tanx + C
∫csc ²x dx =-cot x+ C
∫arcsin x dx = xarcsin x+√(1-x²)+C
∫arccosx dx = xarccos x-√(1-x²)+C
∫arctan x dx = xarctan x-1/2ln(1+x²)+C
∫arc cot x dx =xarccot x+1/2ln(1+x²)+C
∫arcsec xdx =xarcsec x-ln│x+√(x²-1)│+C
∫arccsc x dx =xarccsc x+ln│x+√(x²-1)│+C下载本文