一、选择题
1.如下图所示,观察四个几何体,其中判断正确的是( )
A.①是棱台 B.②是圆台
C.③是棱锥 D.④不是棱柱
2.若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的( )
A.倍 B.2倍
C.倍 D.倍
3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( )
5.正方体的体积是,则其表面积是( )
A. B.16
C.96 D.无法确定
6.圆锥的高扩大到原来的2倍,底面半径缩短到原来的,则圆锥的体积( )
A.缩小到原来的一半 B.扩大到原来的2倍
C.不变 D.缩小到原来的
9.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )
A.7 B.6
C.5 D.3
11.某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为5的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为5的等腰三角形.则该几何体的体积为( )
A.24 B.80
C. D.240
二、填空.
13.圆台的底半径为1和2,母线长为3,则此圆台的体积为________.
15.圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为________.
16一个几何体的三视图及其尺寸如下图所示,其中主视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,这个几何体是 ________.
21.如下图,在底面半径为2、母线长为4的圆锥中内接一个高为的圆柱,求圆柱的表面积.
22.(本题满分12分)如图所示(单位:cm),四边形ABCD是直角梯形,求图中阴影部分绕AB旋转一周所成几何体的表面积和体积.
详解答案
1[答案] C
[解析] 图①不是由棱锥截来的,所以①不是棱台;图②上、下两个面不平行,所以②不是圆台;图④前、后两个面平行,其他面是平行四边形,且每相邻两个四边形的公共边平行,所以④是棱柱;很明显③是棱锥.
2[答案] C
[解析] 设△ABC的边AB上的高为CD,以D为原点,DA为x轴建系,由斜二测画法规则作出直观图△A′B′C′,则A′B′=AB,C′D′=CD.
S△A′B′C′=A′B′·C′D′sin45°
=(AB·CD)=S△ABC.
3[答案] D
[解析] 本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.
[点评] 本题主要考查空间几何体的三视图,考查空间想象能力.是近年高考中的热点题型.
4[答案] A
[解析] 该几何体是长方体,如图所示.
5[答案] C
[解析] 由于正方体的体积是,则其棱长为4,所以其表面积为6×42=96.
6[答案] A
[解析] V=π2×2h=πr2h,故选A.
[答案] C
7[解析] 设最小球的半径为r,则另两个球的半径分别为2r、3r,所以各球的表面积分别为4πr2,16πr2,36πr2,所以=.
8[答案] C
[解析] 由三视图可知该几何体是圆锥,S表=S侧+S底=πrl+πr2=π×3×5+π×32=24π(cm2),故选C.
9[答案] A
[解析] 设圆台较小底面圆的半径为r,由题意,另一底面圆的半径R=3r.
∴S侧=π(r+R)l=π(r+3r)×3=84π,解得r=7.
10[答案] C
[解析] 设球的半径为R,
则圆柱的底面半径为R,高为2R,
∴V圆柱=πR2×2R=2πR3,V球=πR3.
∴==,
S圆柱=2πR×2R+2×πR2=6πR2,S球=4πR2.
∴==.
11[答案] B
[解析] 该几何体的四棱锥,高等于5,底面是长、宽分别为8、6的矩形,则底面积S=6×8=48,则该几何体的体积V=Sh=×48×5=80.
12[答案] B
[解析] 画出该几何体的正视图为,其上层有两个立方体,下层中间有三个立方体,两侧各一个立方体,故B项满足条件.
13[答案] π
[解析] 圆台高h==2,
∴体积V=(r2+R2+Rr)h=π.
14[答案] 36
[解析] 该几何体是底面是直角梯形的直四棱柱,如图所示,底面是梯形ABCD,高h=6,
则其体积V=Sh=×6=36.
[答案] 24π2+8π或24π2+18π
15[解析] 圆柱的侧面积S侧=6π×4π=24π2.
(1)以边长为6π的边为轴时,4π为圆柱底面圆周长,所以2πr=4π,即r=2.
所以S底=4π,所以S表=24π2+8π.
(2)以4π所在边为轴时,6π为圆柱底面圆周长,所以2πr=6,即r=3.所以S底=9π,所以S表=24π2+18π.
16[答案] 2(1+)π+4
[解析] 此几何体是半个圆锥,直观图如下图所示,先求出圆锥的侧面积S圆锥侧=πrl=π×2×2=4π,S底=π×22=4π,
S△SAB=×4×2=4,
所以S表=++4
=2(1+)π+4.
17[解析] 该几何体的上面是一个圆柱,下面是一个四棱柱,其
三视图如图所示.
18[解析] 设圆柱的底面圆半径为rcm,
∴S圆柱表=2π·r·8+2πr2=130π.
∴r=5(cm),即圆柱的底面圆半径为5cm.
则圆柱的体积V=πr2h=π×52×8=200π(cm3).
19[解析] 由三视图可知该几何体是一个正三棱台.
画法:(1)如图①所示,作出两个同心的正三角形,并在一个水
平放置的平面内画出它们的直观图;
(2)建立z′轴,把里面的正三角形向上平移高的大小;
(3)连接两正三角形相应顶点,并擦去辅助线,被遮的线段用虚线表示,如图②所示,即得到要画的正三棱台.
20[解析]如图所示,连接AC和BD交于O,连接SO.作SP⊥AB,连接OP.
在Rt△SOP中,SO=(m),OP=BC=1(m),
所以SP=2 (m),
则△SAB的面积是×2×2=2 (m2).
所以四棱锥的侧面积是4×2=8 (m2),
即制造这个塔顶需要8m2铁板.
21[解析] 设圆柱的底面半径为r,高为h′.
圆锥的高h==2,
又∵h′=,
∴h′=h.∴=,∴r=1.
∴S表面积=2S底+S侧=2πr2+2πrh′
=2π+2π×=2(1+)π.
22[解析] 由题意,知所成几何体的表面积等于圆台下底面积+圆台的侧面积+半球面面积.
又S半球面=×4π×22=8π(cm2),
S圆台侧=π(2+5)=35π(cm2),
S圆台下底=π×52=25π(cm2),
即该几何全的表面积为
8π+35π+25π=68π(cm2).
又V圆台=×(22+2×5+52)×4=52π(cm3),
V半球=××23=(cm3).
所以该几何体的体积为V圆台-V半球=52π-=(cm3).下载本文