采样得到的数字信号,就可以做FFT变换了。N个采样点,经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT运算,通常N取2的整数次方。
假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对应着一个频率点。这个点的模值,就是该频率值下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。而第一个点就是直流分量,它的模值就是直流分量的N倍。而每个点的相位呢,就是在该频率下的信号的相位。
第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。例如某点n所表示的频率为:Fn=(n-1)*Fs/N。
由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析到0.5Hz。如果要提高频率分辨力,则必须增加采样点数,也即采样时间。频率分辨率和采样时间是倒数关系。
假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是An=根号a*a+b*b,相位就是Pn=atan2(b,a)。根据以上的结果,就可以计算出n点(n≠1,且n<=N/2)对应的信号的表达式为:
An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An/N*cos(2*pi*Fn*t+Pn)。
对于n=1点的信号,是直流分量,幅度即为A1/N。
由于FFT结果的对称性,通常我们只使用前半部分的结果,即小于采样频率一半的结果。
源程序
%*************************************************************************%
% FFT实践及频谱分析 %
%*************************************************************************%
%*************************************************************************%
%***************1.正弦波****************%
fs=100;%设定采样频率
N=128;
n=0:N-1;
t=n/fs;
f0=10;%设定正弦信号频率
%生成正弦信号
x=sin(2*pi*f0*t);
figure(1);
subplot(231);
plot(t,x);%作正弦信号的时域波形
xlabel('t');
ylabel('y');
title('正弦信号y=2*pi*10t时域波形');
grid;
%进行FFT变换并做频谱图
y=fft(x,N);%进行fft变换
mag=abs(y);%求幅值
f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换
figure(1);
subplot(232);
plot(f,mag);%做频谱图
axis([0,100,0,80]);
xlabel('频率(Hz)');
ylabel('幅值');
title('正弦信号y=2*pi*10t幅频谱图N=128');
grid;
%求均方根谱
sq=abs(y);
figure(1);
subplot(233);
plot(f,sq);
xlabel('频率(Hz)');
ylabel('均方根谱');
title('正弦信号y=2*pi*10t均方根谱');
grid;
%求功率谱
power=sq.^2;
figure(1);
subplot(234);
plot(f,power);
xlabel('频率(Hz)');
ylabel('功率谱');
title('正弦信号y=2*pi*10t功率谱');
grid;
%求对数谱
ln=log(sq);
figure(1);
subplot(235);
plot(f,ln);
xlabel('频率(Hz)');
ylabel('对数谱');
title('正弦信号y=2*pi*10t对数谱');
grid;
%用IFFT恢复原始信号
xifft=ifft(y);
magx=real(xifft);
ti=[0:length(xifft)-1]/fs;
figure(1);
subplot(236);
plot(ti,magx);
xlabel('t');
ylabel('y');
title('通过IFFT转换的正弦信号波形');
grid;
%****************2.矩形波****************%
fs=10;%设定采样频率
t=-5:0.1:5;
x=rectpuls(t,2);
x=x(1:99);
figure(2);
subplot(231);
plot(t(1:99),x);%作矩形波的时域波形
xlabel('t');
ylabel('y');
title('矩形波时域波形');
grid;
%进行FFT变换并做频谱图
y=fft(x);%进行fft变换
mag=abs(y);%求幅值
f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换
figure(2);
subplot(232);
plot(f,mag);%做频谱图
xlabel('频率(Hz)');
ylabel('幅值');
title('矩形波幅频谱图');
grid;
%求均方根谱
sq=abs(y);
figure(2);
subplot(233);
plot(f,sq);
xlabel('频率(Hz)');
ylabel('均方根谱');
title('矩形波均方根谱');
grid;
%求功率谱
power=sq.^2;
figure(2);
subplot(234);
plot(f,power);
xlabel('频率(Hz)');
ylabel('功率谱');
title('矩形波功率谱');
grid;
%求对数谱
ln=log(sq);
figure(2);
subplot(235);
plot(f,ln);
xlabel('频率(Hz)');
ylabel('对数谱');
title('矩形波对数谱');
grid;
%用IFFT恢复原始信号
xifft=ifft(y);
magx=real(xifft);
ti=[0:length(xifft)-1]/fs;
figure(2);
subplot(236);
plot(ti,magx);
xlabel('t');
ylabel('y');
title('通过IFFT转换的矩形波波形');
grid;
%****************3.白噪声****************%
fs=10;%设定采样频率
t=-5:0.1:5;
x=zeros(1,100);
x(50)=100000;
figure(3);
subplot(231);
plot(t(1:100),x);%作白噪声的时域波形
xlabel('t');
ylabel('y');
title('白噪声时域波形');
grid;
%进行FFT变换并做频谱图
y=fft(x);%进行fft变换
mag=abs(y);%求幅值
f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换
figure(3);
subplot(232);
plot(f,mag);%做频谱图
xlabel('频率(Hz)');
ylabel('幅值');
title('白噪声幅频谱图');
grid;
%求均方根谱
sq=abs(y);
figure(3);
subplot(233);
plot(f,sq);
xlabel('频率(Hz)');
ylabel('均方根谱');
title('白噪声均方根谱');
grid;
%求功率谱
power=sq.^2;
figure(3);
subplot(234);
plot(f,power);
xlabel('频率(Hz)');
ylabel('功率谱');
title('白噪声功率谱');
grid;
%求对数谱
ln=log(sq);
figure(3);
subplot(235);
plot(f,ln);
xlabel('频率(Hz)');
ylabel('对数谱');
title('白噪声对数谱');
grid;
%用IFFT恢复原始信号
xifft=ifft(y);
magx=real(xifft);
ti=[0:length(xifft)-1]/fs;
figure(3);
subplot(236);
plot(ti,magx);
xlabel('t');
ylabel('y');
title('通过IFFT转换的白噪声波形');
grid;下载本文