视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
《三角形的中位线》说课稿
2025-09-26 21:50:07 责编:小OO
文档
《三角形的中位线》说课稿

旭阳中学   张国林

尊敬的各评委、同仁大家好:

我是来自旭阳中学的张国林,今天我说课的内容是《三角形的中位线 》,下面我将从教材分析 、学情分析、教学策略、教学程序设计等方面进行说明:

一、教材分析

1、教材所处的地位和作用:

三角形中位线是三角形中重要的线段,其性质是三角形的一个重要结论,它是前面已学过的平行线、全等三角形、平行四边形、中心对称等知识内容的应用和深化,对进一步学习相关几何知识非常重要,尤其是在识别两条直线平行和验证线段倍、分关系时经常用到。

2、教学目标:

(1)、知识与技能目标:探索并掌握三角形中位线的概念和性质。

(2)、过程与方法目标:经历探索三角形中位线性质的过程,体会转化的数学思想,进一步发展学生操作、观察、归纳、推理能力;让学生接触并解决一些现实生活中的问题,逐步培养学生的应用能力和创新意识。

(3)、情感、态度、价值观目标:通过真实的、贴近学生生活的素材和适当的问题情境,激发学生学习数学的热情和兴趣;通过对三角形中位线的探究,体验数学活动充满探索性和创造性,在操作活动中,培养学生的合作精神。

3.教学重点和难点:

教学重点:探索、发现三角形中位线的性质并能应用其性质解决实际问题。.

教学难点:三角形中位线性质的验证及应用。

二、学情分析:

在认知上学生已掌握了如何构造中心对称图形以及中心对称的性质,这将成为本节课学生研究和探索三角形中位线性质的基础知识。

在能力上学生通过前几章内容的学习,已具备一定的操作、归纳、推理和验证能力,但在数学意识与应用能力方面尚需要进一步培养。

在情感方面多数学生对数学学习有一定的兴趣,能够积极参与动手操作和探究,但在合作交流方面,发展不够均衡,有待加强。

三、教学策略:

教法与学法:

教法:本节课采用了实验观察、探究归纳、理论验证、巩固深化的四段教学法,在多媒体的辅助下突破常规模式,让学生在活动、探索、和谐的教学中获取新知,开发学生的创造性思维,达到教学目标。

    学法:以小组合作的方式让学生掌握实验与观察、分析与比较、讨论与释疑、概括与归纳、巩固与提高等科学的学习方法;学会举一反三,灵活转换的学习方法,学会运用化归思想去解决问题。 

四、教学程序:

为了激发学生对新知识的学习兴趣和求知欲望,充分调动学生内在的学习动机,整个教学过程分五个步骤:

1:创设情境,兴趣导学

借助多媒体演示引例,创设悬念——如何测算被池塘隔开的A、B两地的距离吸引学生的注意,激发了学生的兴趣和求知欲,引出课题。

2、尝试探索,获取新知。

(1)由情景教学,自然顺畅地引出三角形中位线的概念。

引导学生分析概念的数学表达方式

因为   D、 E分别为AB、 AC的中点

所以   DE为 △ ABC的中位线         

教师进一步引导学生弄清三角形的中位线定义的两层含义:∵D、E分别为AB、AC的中点∴DE为△ABC的中位线∵ DE为△ABC的中位线  ∴ D、E分别为AB、AC的中点

(2)动手画画:画出三角形的中线和中位线,并感知它们的不同之处。

设计意图:通过画图,使学生熟悉图形特征,加强对三角形中位线的感知,并通过与已学的三角形中线概念作比较,以及对定义的两层含义的分析加强对三角形中位线概念的理解。

(3)引导学生观测前面画出的三角形的中位线,并回答问题:1、一个三角形共有几条中位线?2、一个三角形有几条中线?3、三角形的中位线和三角形的中线有何区别? 4、三角形的中位线有何性质?请从位置关系和数量关系两方面进行探究。

利用分组合作的方式让学生观测和猜想,培养学生观察,分析,归纳的能力。

经过以上的探究和讨论学生会猜测出“三角形的中位线平行于第三边,并等于它的一半”这一结论。

这时教师提出问题,这个结论是否具有普遍性,还得从理论上加以验证。怎样验证呢?教师引领学生用数学语言来表示条件、结论的因果关系:因为DE是△ABC的中位线,所以DE 1/2BC,然后利用旋转、全等三角形、平行四边形等知识对结论进行验证。

设计意图:为了拓宽学生思路,发展学生的发散思维。通过课件演示,帮助、启发学生尝试用添加辅助线的方法加以验证。把新知识三角形中位线性质转化为已学过的平行线、全等三角形、平行四边形等知识来解决,教给学生科学的分析方法,对学生进行化归思想的教育,对所得结论,给出另外五种思路的验证。

小结:以上各种验证方法,都是将问题转化到平行四边形中去解决。不同的转化思路引出了不同的验证方法,这体现了数学中的转化归纳的重要思想。

(4)得出性质:

三角形的中位线平行于第三边且等于第三边的一半.

设计意图:通过先实验,再验证,提出三角形中位线性质,这符合性质产生的过程,让学生学会科学地探究问题和解决问题,培养学生严谨的学习作风。

如果  DE是△ABC的中位线

那么  ⑴  DE∥BC,

      ⑵  DE=1/2BC

设计意图:对学生进行数学语言的训练。

并强调性质的用途:

①验证两线平行问题

②验证一条线段是另一条线段的2倍或1/2

(5)规范引路:

设计意图:利用课本例题,进行规范引路,规范学生的书写格式,使学生养成良好的书写习惯。

3、智海扬帆,巩固深化

(1)针对本课重点,设置一组有层次的习题,强化学生对重点知识的熟练掌握。可以调动学生学习积极性,巩固所学知识。

(2)知识延伸与拓展

学生观察并思考:顺次连结四边形各边中点所得到的四边形是什么样的图形?为什么?在学生积极思考后,猜测结论。然后教师引导学生进行思路分析。

设计意图:只书写一种验证方法,其它方法在学生讨论的基础上教师做思路分析,扩展学生的思维。

小结:以上各种思路,关键在于添加适当的辅助线,构造出三角形中位线性质的条件,结合平行四边形的各种识别方法,形成不同的验证方法。这里把四边形问题转化为三角形的问题来解决,运用了化归思想。

(3)变式训练是拓展学生思路,提高学生应变能力,发展学生创造性思维的有效手段。对学生进行三种变式训练,并引导学生对每一种变式训练进行多种思路分析。

(4)通过中考题的练习,使学生感到中考题并不难,只要平时知识学得扎实,注重积累和运用,中考就一定会取得好成绩,增强学生学习的自信心

4、梳理回放,加深认识

我是通过问题的设置,让学生自己理清这节课的知识脉络。提高学生归纳总结能力,让学生在归纳中获取新知,巩固强化本节课所学内容,培养科学的学习习惯。

5、布置作业,延伸拓展

设计意图:通过作业反馈本节课知识掌握的效果,在课后可以解决学生尚有疑难的地方。作业分为必做题和选做题,这样的设计充分考虑到了学生的差异性,使不同智力水平、知识结构的学生都能得到发展和锻炼。

板书设计:

以上就是我阐述的“三角形中位线”这一节的有关设想,不足之处,请各位同仁批评指正。

《三角形的中位线》说课稿

          

           单位:旭阳中学 

           姓名:  张国林下载本文

显示全文
专题