函数的性质通常是指函数的定义域、值域、解析式、单调性、奇偶性、周期性、对称性等等,在解决与函数有关的(如方程、不等式等)问题时,巧妙利用函数及其图象的相关性质,可以使得问题得到简化,从而达到解决问题的目的.
I.函数的定义
设A,B都是非空的数集,f是从A到B的一个对应法则.那么,从A到B的映射f:A→B就叫做从A到B的函数.记做y=f(x),其中x∈A,y∈B,原象集合,A叫做函数f(x)的定义域,象的集合C叫做函数的值域,显然CB.
II.函数的性质
(1)奇偶性 设函数f(x)的定义域为D,且D是关于原点对称的数集.若对任意的x∈D,都有f(-x)=-f(x),则称f(x)是奇函数;若对任意的x∈D,都有f(-x)=f(x),则称f(x)是偶函数.
(2)函数的增减性 设函数f(x)在区间D′上满足:对任意x1, x2∈D′,并且x1 III.函数的周期性 对于函数 f(x),如果存在一个不为零的正数T,使得当x取定义域中的每个数时,f(x+T)=f(x)总成立,那么称f(x)是周期函数,T称做这个周期函数的周期.如果函数f(x)的所有周期中存在最小值T0,称T0为周期函数f(x)的最小值正周期. 例题讲解 1.已知f(x)=8+2x-x2,如果g(x)=f(2-x2),那么g(x)( ) A.在区间(-2,0)上单调递增 B.在(0,2)上单调递增 C.在(-1,0)上单调递增 D.在(0,1)上单调递增 2.设f(x)是R上的奇函数,且f(x+3)=-f(x),当0≤x≤时,f(x)=x,则f(2003)=( ) A.-1 B.0 C.1 D.2003 3.定义在实数集上的函数f(x),对一切实数x都有f(x+1)=f(2-x)成立,若f(x)=0仅有101个不同的实数根,那么所有实数根的和为( ) A.150 B. C.152 D. 4.实数x,y满足x2=2xsin(xy)-1,则x1998+6sin5y=______________. 5.已知x=是方程x4+bx2+c=0的根,b,c为整数,则b+c=__________. 6.已知f(x)=ax2+bx+c(a>0),f(x)=0有实数根,且f(x)=1在(0,1)内有两个实数根,求证:a>4. 7.已知f(x)=x2+ax+b(-1≤x≤1),若|f(x)|的最大值为M,求证:M≥. 8.⑴解方程:(x+8)2001+x2001+2x+8=0 ⑵解方程: 9.设f(x)=x4+ax3+bx2+cx+d,f⑴=1,f⑵=2,f⑶=3,求[f⑷+f(0)]的值. 10.设f(x)=x4-4x3+x2-5x+2,当x∈R时,求证:|f(x)|≥ 例题答案: 1.提示:可用图像,但是用特殊值较好一些.选C 2.解:f(x+6)=f(x+3+3)=-f(x+3)=f(x) ∴ f(x)的周期为6 f(2003)=f(6×335-1)=f(-1)=-f⑴=-1 选A 3.提示:由已知,函数f(x)的图象有对称轴x= 于是这101个根的分布也关于该对称轴对称. 即有一个根就是,其余100个根可分为50对,每一对的两根关于x=对称 利用中点坐标公式,这100个根的和等于×100=150 所有101个根的和为×101=.选B 4.解:如果x、y不是某些特殊值,则本题无法(快速)求解 注意到其形式类似于一元二次方程,可以采用配方法 (x-sin(xy))2+cos2(xy)=0 ∴ x=sin(xy) 且 cos(xy)=0 ∴ x=sin(xy)=±1 ∴ siny=1 xsin(xy)=1 原式=7 5.解:(逆向思考:什么样的方程有这样的根?) 由已知变形得x- ∴ x2-2x+19=99 即 x2-80=2x 再平方得x4-160x2+00=76x2 即 x4-236x2+00=0 ∴ b=-236,c=00 b+c=61 6.证法一:由已知条件可得 △=b2-4ac≥0 ① f⑴=a+b+c>1 ② f(0)=c>1 ③ 0<-<1 ④ b2≥4ac b>1-a-c c>1 b<0(∵ a>0) 于是-b≥2 所以a+c-1>-b≥2 ∴ ()2>1 ∴ >1 于是+1>2 ∴ a>4 证法二:设f(x)的两个根为x1,x2, 则f(x)=a(x-x1)(x-x2) f⑴=a(1-x1)(1-x2)>1 f(0)=ax1x2>1 由基本不等式 x1(1-x1)x2(1-x2)≤[(x1+(1-x1)+x2+(1-x2))]4=()2 ∴ ≥a2x1(1-x1)x2(1-x2)>1 ∴ a2>16 ∴ a>4 7.解:M=|f(x)|max=max{|f⑴|,|f(-1)|,|f(-)|} ⑴若|-|≥1 (对称轴不在定义域内部) 则M=max{|f⑴|,|f(-1)|} 而f⑴=1+a+b f(-1)=1-a+b |f⑴|+|f(-1)|≥|f⑴+f(-1)|=2|a|≥4 则|f⑴|和|f(-1)|中至少有一个不小于2 ∴ M≥2> ⑵|-|<1 M=max{|f⑴|,|f(-1)|,|f(-)|} =max{|1+a+b|,|1-a+b|,|-+b|} =max{|1+a+b|,|1-a+b|,|-+b|,|-+b|} ≥(|1+a+b|+|1-a+b|+|-+b|+|-+b|) ≥[(1+a+b)+(1-a+b)-(-+b)-(-+b)] = ≥ 综上所述,原命题正确. 8.⑴解:原方程化为(x+8)2001+(x+8)+x2001+x=0 即(x+8)2001+(x+8)=(-x)2001+(-x) 构造函数f(x)=x2001+x 原方程等价于f(x+8)=f(-x) 而由函数的单调性可知f(x)是R上的单调递增函数 于是有x+8=-x x=-4为原方程的解 ⑵两边取以2为底的对数得 于是f(2x)=f(x2+1) 易证:f(x)世纪函数,且是R上的增函数, 所以:2x=x2+1 解得:x=1 9.解:由已知,方程f(x)=x已知有三个解,设第四个解为m, 记 F(x)=f(x)-x=(x-1)(x-2)(x-3)(x-m) ∴ f(x)=(x-1)(x-2)(x-3)(x-m)+x f⑷=6(4-m)+4 f(0)=6m ∴ [f⑷+f(0)]=7 10.证明:配方得: f(x)=x2(x-2)2+(x-1)2- =x2(x-2)2+(x-1)2-1+ =(x2-2x)2+(x-1)2-1+ =[(x-1)2-1]2+(x-1)2-1+ =(x-1)4-2(x-1)2+1+(x-1)2-1+ =(x-1)4+(x-1)2+ ≥下载本文