视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
人教版八上物理3.1《温度》教学设计
2025-09-29 17:14:54 责编:小OO
文档
第1节 温度

三维目标

知识与技能

1.理解温度计的工作原理。

2.了解并记住一些生活环境中常见的温度值。

3.会用温度计测量温度。

过程与方法

1.通过观察和实验了解温度计的结构及工作原理。

2.通过学习活动,使学生掌握温度计的使用方法。

情感、态度与价值观

通过教学活动,激发学生的学习兴趣和对科学的求知欲望,使学生乐于探索自然现象和日常生活中的物理学道理。

教学重点

1.理解温度计的工作原理和结构;

2.掌握温度计的使用方法。

教学难点

温度计的特点及使用方法。

教学准备

自制温度计相关器材、广口瓶、细玻璃管、酒精灯、烧杯、水、实验室用的温度计、寒暑表、体温计、多媒体课件等。

导入新课

多媒体展示图片:

三只烧杯中分别放冰水、温水和热水,引导学生进行“冷”“热”的体验,并描述感觉。

实验:把左手食指插入放热水(热水越热越好,以不烫手为宜)的烧杯里,右手食指插入放冷水(冷水足够冷,可加冰块)的烧杯里,然后同时抽出手,插入温水烧杯里。

思考:两只手指对温水的感觉相同吗?

你能准确地判断出水的冷热程度吗?

交流讨论:左手、右手的感觉,原来放在热水中的食指放到温水中有什么感觉?原来放在冷水中的食指放到温水中有什么感觉?讨论哪个手指的感觉是正确的。并交流生活中还有没有类似的例子(井水“冬暖夏凉”)。

师生归纳:

同一杯水温度应该一样,而我们的感觉却不同,说明我们的感觉不可靠。

我们把物体的冷热程度叫温度,“冷、热、凉、暖”都是描述物体的冷热程度的。要准确地知道物体的温度,必须借助于测量工具——温度计。本节课我们将学习温度的有关知识。

推进新课

一、温度计

提出问题:如果我们要确切知道这杯水的温度,应该怎么办?

1.共同探究:自制一个温度计

在广口瓶内加入一些带颜色的水,配一个橡皮塞,橡皮塞上插进一根一端封闭的细玻璃管,把细玻璃管封闭的一端加热,使玻璃管内的空气跑出一些,迅速用橡皮塞塞住瓶口。

                 

实验探究:把自制温度计放入热水和冷水中,观察细管中水柱的变化。

将广口瓶放入热水里,仔细观察细管中水柱的位置,再放入冷水里,观察水柱位置

学生分组实验,教师巡回指导,实验完毕后小组推选代表发言。

学生实验并观察、思考:

将烧瓶浸在热水中有什么现象,取出放入冷水中又如何?演示为什么会出现这样的现象呢?

参:放入热水里,细管中水柱上升。放入冷水里,细管中水柱下降。

归纳小结:这种现象的原因是液体的热胀冷缩。

请大家取出桌上的温度计,和我们前面的装置作一个比较:

圆底烧瓶相当于温度计的哪个部位(玻璃泡里面存放有染色液体,我们的温度计内存放的是染色的煤油)

在我们装置上有一根长而细的玻璃管,温度计内有这样的玻璃管吗?

我们发现它更细了,细得跟人的毛细血管一样,我们称之为毛细管,用玻璃造这样一根细管肯定不易,有这个必要吗?这么细有什么好处呢?

玻璃泡中的液体只要有一个微小的膨胀,毛细管中液柱的长度就会有明显的改变,好像把液体的膨胀放大了。

温度计上的每一小格是怎么回事?温度就像我们前面学的长度要有标准一样,有了1 m的标准后就有了1 cm,1 mm,温度也要有标准,温度的标准叫温标。

学生交流讨论:

(1)温度计为什么要有液泡?

(2)为什么要用细管?

(3)要比较方便、准确地比较出两杯冷热程度差不多的水的温度,还有哪些地方可以改进?

学生自由讨论,对自制温度计进行修改,如瓶太大了,不方便,可以缩小为玻璃泡;并将其中的液体改为水银、煤油、酒精等液体;将细管改为封闭的玻璃管,并将内径变细,还要标上刻度等。

2.温度计的工作原理及结构

家庭和实验室里常用的温度计是根据液体热胀冷缩的规律制成的,液泡里面有的用酒精,有的用煤油,还有的用水银。

学生活动:带着问题观察实验室用温度计

1.实验室用温度计的组成?(注意引导学生观察上面的标度)

2.液泡的作用是什么?玻璃管内径为什么很细?

教师介绍:实验室用温度计,寒暑表,体温计。

共同讨论温度计的基本结构,完毕后小组代表发言。

学生总结:温度计的基本构造包括玻璃泡、细玻璃管(内径很细,粗细均匀)、刻度。

拓展研究:比较三种温度计的相同点和不同点

三种温度计的相同点

项目实验室用温度计体温计寒暑表
构造都是由玻璃外壳、毛细管、玻璃泡、液体、刻度等组成
原理液体的热胀冷缩
单位摄氏度
三种温度计的不同点

项目实验室用温度计体温计寒暑表
测量范围-20~110 ℃

35~42 ℃

-25~50 ℃

分度值1 ℃

0.1 ℃

1 ℃

用途实验用测体温测气温
构造无缩口有缩口无缩口
玻璃泡内的液体煤油水银酒精
多媒体展示各种各样的温度计

玻璃电接点温度计园艺温度计婴儿沐浴温度计室内温度计
工业双金属温度计光学高温计红外线测温计红外线(耳式)测温计

教师引导过渡:教师引导学生观察温度计上的℃,它表示该温度计采用的是摄氏温度,摄氏温度是温度的一种标度方法,温度的标度方法除了摄氏温度外,还有热力学温度,我们先来研究摄氏温度。

二、摄氏温度

学生活动:带着问题观察实验室用温度计并阅读课本

1.上面的数字和字母是什么意思?

2.它能测量的最高温度、最低温度各是多少?

3.它的分度值是多少?

4.0 ℃是怎样确定的?100 ℃又是怎样确定的?

5.1 ℃是怎样确定的?

6.摄氏温标的分度法怎样扩大到0 ℃以下和100 ℃以上?

阅读讨论,了解单位

A.字母“℃”的意思:表示摄氏温度(瑞典的摄尔修斯提出的)。

B.0摄氏度的规定:在一个大气压下,冰、水混合物的温度,记作0 ℃(关于“一个大气压”在后面的学习中会进一步的了解)。

C.100摄氏度的规定:在一个大气压下,水沸腾时的温度,记作100 ℃。

D.1摄氏度:0 ℃和100 ℃之间等分100份,每个等份代表1 ℃。

人体的正常体温为37 ℃,读作:37摄氏度。

珠峰营地的帐篷内,温度为-15 ℃,读作:负15摄氏度或零下15摄氏度。

多媒体出示小资料:自然界的一些温度/℃

教师引导学生观察并讨论着将空白处填上。学生讨论后回答:

(1)高压锅内沸水的温度是高于100 ℃。

(2)人的正常体温是37 ℃。

(3)冰箱的最低温度是-18 ℃。

(4)我国最低气温为-52.3 ℃(漠河镇)。

教师引导过渡:知道了温度计的结构、原理后,那么我们应该怎样正确使用呢?

三、温度计的使用

多媒体出示:想想议议 共同探究

1.如果所测的温度过高或过低,超出了温度计所能测量的最高温度、最低温度,会出现什么后果?

2.观察寒暑表、体温计和实验室用的温度计,它们所能测量的最高温度、最低温度和分度值各是多少?为什么这样设计它们的量程和分度值?

学生分小组讨论,教师巡回指导,注意引导学生从联系实际的角度思考,然后请几名同学发言。

学生总结:如果所测的温度过高,超出了温度计的量程,将测不出温度,温度计里的液体可能将温度计胀破;如果所测的温度过低,低于温度计的最低温度,将测不出温度。

归纳总结:温度计的使用规则

(1)使用前要观察温度计的零刻度、量程和分度值。

(2)温度计所能测出的最高温度、最低温度的范围——量程。

(3)每一小格代表的温度值——分度值。

教师引导学生观察并根据自己的推测判断:

多媒体出示:判断对错

学生分小组讨论,教师引导学生注意错误的错在什么地方?学生讨论后推选代表发言。

参:

(1)第一个图错误是温度计玻璃泡接触了容器底部。

(2)第二个图错误是温度计玻璃泡接触了容器侧壁。

(3)第三个图错误是温度计玻璃泡没有全部浸没在液体中。

(4)第四个图有可能发生的错误是:没有等待温度计的示数稳定后就读数。

(5)第五个图错误是读数时温度计离开了被测液体。

(6)第七个图中间一个是对的,上下两个可能的错误是读温度计示数时眼睛没有平视。

教师进一步提出问题,引导思考:大家知道了使用温度计常犯的几种错误,应该如何正确使用温度计呢?

讨论后共同归纳总结:温度计的正确使用方法

1.温度计的玻璃泡全部浸入被测的液体中,不要碰到容器底或容器壁。

2.温度计的玻璃泡浸入被测的液体后要稍等一会儿,待温度计的示数稳定后再读数。

3.读数时温度计的玻璃泡要继续留在液体中,视线要与温度计中液柱的上表面相平。

四、体温计

我们家庭中和医院常用体温计测量人体温度,请同学们仔细观察体温计图片,思考问题。

多媒体出示:体温计挂图

学生分组讨论思考问题:

(1)体温计与实验室用的温度计的构造有什么不同?体温计的构造有什么特点?

(2)体温计可以离开人体读温度,为什么?为什么使用体温计前先要甩甩?

教师进一步根据问题引导大家观察讨论来得出结论。

学生总结:

(1)体温计里面的毛细管,比实验室用的温度计更细,而且在玻璃泡和直玻璃管之间有非常细的弯曲缩口。玻璃管非常细,这样当玻璃泡内的水银有微小的膨胀,玻璃管内的水银柱会有明显变化,因而更精确。

(2)读体温计示数时要离开人体,水银变冷收缩,水银柱在缩口处断开不能退回玻璃泡,所以仍指示原来的温度。离开人体,水银变冷收缩,水银柱在缩口处断开不能退回玻璃泡,重新用体温计时,必须拿着体温计用力往下甩,让水银再回到玻璃泡里,这样才能使用,否则测量出的温度不准确。

(略)

规律总结:

本节课主要学习了温度的概念、摄氏温度、实验室用的温度计和体温计的构造及正确的使用方法。明确使用液体温度计应注意的问题:1.使用前,估计被测物体的温度,选择量程合适的温度计,弄清所选温度计的分度值;2.使用时,温度计的玻璃泡要全部浸入被测液体中;温度计的玻璃泡不能接触容器底和容器壁;3.读数时,温度计的玻璃泡浸入被测液体后要稍候一会儿,要等示数稳定后再读数。读数时温度计的玻璃泡要继续留在液体中,视线要与液柱上表面相平。

第1节 温度

1.温度计

2.摄氏温度

3.温度计的使用

4.体温计

自然界中温度的变化范围有多大

正常人的体温大约是36.5 ℃(腋下温度)或37 ℃(口腔温度),人在生病时体温会有较大变化,但一般说来不会超出35~42 ℃的范围,因此体温计的测量范围就是35~42 ℃(34~43 ℃)。鸟类和哺乳动物都属于恒温动物,一般说鸟类的体温较高而哺乳动物的体温较低,但总的说来都在40 ℃上下,与人类的体温差别不很大,这是因为它们跟我们人类都生活在同一个星球上,处在大体相同的环境中的缘故。

我们都生活在地球表面,地球上不同的地方、不同的时间里温度的差异和变化是很大的,炎热夏季的沙漠,温度可高达60 ℃以上,而在南极的内陆,人们已经测到-88.3 ℃的低温。对于人类来说,温度的差值不能说不大,但从物理学的观点看,地球表面气温的变化范围并不算大,充其量不会超过200 ℃。

月球表面的条件要恶劣得多,由于没有空气的调节,太阳照射处的温度很快升高,最高可达135 ℃,而背对太阳时,温度又很快下降,可降至-160 ℃。太阳系的其他行星同样不适宜人类的生存,内行星(金星和水星)离太阳太近,温度太高(飞船降落在金星表面,测得最高温度超过440 ℃,而水星探测器已探测出水星面向太阳的一面温度也高达400 ℃以上);那些离太阳遥远的外行星(木星、土星、天王星等),表面则过于寒冷,例如木星表面温度约是-140 ℃。只有火星与地球表面情况最为相似,但与地球相比条件还是恶劣得多,1976年在火星表面着陆的太空船上的气象站测出的着陆点的温度,昼夜变化范围为-85~30 ℃。火星表面没有水,大气中没有氧气,因此直到目前还没有在火星上发现生命的迹象。

再回过头来说说我们的地球。从地壳的恒温层往下,大约每100 m温度升高3 ℃左右,穿透地壳就是炽热的岩浆,温度约在1 100~1 300 ℃。地球的中心部分称为地核,其温度为2 000~5 000 ℃。从地表往上10~12 km的对流层内,大约以65 ℃/km的速率降温。在对流层顶往上至50 km左右称为平流层,温度随高度的上升而上升,再往上至80 km左右是中间层,这里温度随高度的上升而下降。从80 km到500 km左右称为热层,这一层的温度很高,而且昼夜变化很大。再往上是电离层,电离层的顶部是大气层中温度最高的区域,可达2 200 ℃左右。尽管分子的平均动能很大,但这里气体已经非常稀薄,在宇宙飞船经过时,完全不会对飞船产生伤害。再往上空气更为稀薄,温度又很快降低。大气层外就是真正的宇宙空间,那里的温度约为-270 ℃左右,或说大约为3 K。

恒星是发光的星体,它们的温度一般都很高。我们的太阳在恒星的大家族里,无论从哪个方面说(质量、体积、表面温度、发光强度等等),都只能算是中等偏下。太阳的表面温度约为6 000 K,至于其他恒星,表面温度达到几万开以至更高的,比比皆是。

使用人工方法在局部获得高温已不是难事。一般火焰的温度约为1 000 ℃左右,白炽灯泡灯丝发光时的温度可以达到2 000 ℃左右,使用氢氧吹管进行焊接时火焰的温度可达4 000 ℃,原子弹爆炸时中心温度可超过几百万摄氏度,而氢弹爆炸时的温度则更高,能达到108 K。这是目前为止用人工方法所能获得的最高温度。恒星内部发生的就是这类核聚变反应,恒星内部的温度比起人工获得的高温要高得多。

综上所述,宇宙中的温度范围大约在3~108 K。用人工的方法获取超低温的努力早已开始。利用气体液化后节流膨胀和绝热膨胀可以得到4.2 K的低温,利用抽气加速液体的蒸发还可以获得更低的温度。如果用的液体是氦,则温度可达到10-3 K。利用顺磁质绝热退磁,可以使温度进一步降低到10-5 K。1979年赫尔辛基工业大学一个实验小组使用两级核绝热去磁法,得到了5×10-8 K的低温,而到19年,芬兰学者哈科宁和来自我国四川大学的学者殷实又共同创造了2×10-9 K的低温记录,距离绝对零度只差五亿分之一开了。技术不断进步,人类向绝对零度的逼近过程还会继续,但不可能真正达到0 K的极限。下载本文

显示全文
专题