视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
【中考数学】有理数解答题训练经典题目(附答案)
2025-09-29 16:31:41 责编:小OO
文档
【中考数学】有理数解答题训练经典题目(附答案)

一、解答题

1.点A、O、B、C从左向右依次在数轴上的位置如图所示,点O在原点,点A、B、C表示的数分别是a、b、c .

(1)若a=﹣2,b=4,c=8,D为AB中点,F为BC中点,求DF的长.

(2)若点A到原点的距离为3,B为AC的中点.

①用b的代数式表示c;

②数轴上B、C两点之间有一动点M,点M表示的数为x,无论点M运动到何处,代数式|x﹣c|﹣5|x﹣a|+bx+cx 的值都不变,求b的值.

2.已知表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离请试着探索:

(1)找出所有符合条件的整数,使,这样的整数是________;(2)利用数轴找出,当时,的值是________;

(3)利用数轴找出,当取最小值时,的范围是________.

3.已知有理数a,b,c在数轴上的位置如图所示:

解答下列式子:

(1)比较a,c的大小(用“<”连接);

(2)若,试化简等式的右边;

(3)在(2)的条件下,求的值.

4.如图,点、、是数轴上三点,点表示的数为, .

(1)写出数轴上点、表示的数:________,________.

(2)动点,同时从,出发,点以每秒个单位长度的速度沿数轴向右匀速运动,点以个单位长度的速度沿数向左匀速运动,设运动时间为秒.

①求数轴上点,表示的数(用含的式子表示);

② 为何值时,点,相距个单位长度.

5.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.

(1)当a=﹣2,b=6时,求a-b=________,线段AB的中点对应的数是________;(直接填结果)

(2)若该数轴上另有一点M对应着数m.

①当a=﹣4,b=8,点M在A,B之间,且AM=3BM时,求m的值.

②当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值.

6.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:

(1)求|5-(-2)|=________.

(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是________.

(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有写出最小值,如果没有说明理由.

7.观察下列等式,,

以上三个等式两边分别相加得:

(1)猜想并写出: ________

(2)计算: ________

(3)探究并计算:

8.(1)阅读下面材料:

点、在数轴上分别表示实数,、两点之间的距高表示为

当、两点中有一点在原点时,不妨设点在原点,如图1,

当、都不在原点时,

①如图2,点、都在原点的右侧,

②如图3,点、都在原点的左侧,

③如图4,点、在原点的两侧,

(1)回答下列问题:

①数轴上表示2和5的两点间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;

②数轴上表示和-1的两点和之间的距离是________,如果,那么为________;

③当代数式取最小值时,相应的的取值范围是________;

④求的最小值,提示:

.

9.点A在数轴上对应的数为3,点B对应的数为b,其中A、B两点之间的距离为5 (1)求b的值

(2)当B在A左侧时,一点D从原点O出发以每秒2个单位的速度向左运动,请问D运动多少时间,可以使得D到A、B两点的距离之和为8?

(3)当B在A的左侧时,一点D从O出发以每秒2个单位的速度向左运动,同时点M从B出发,以每秒1个单位的速度向左运动,点N从A出发,以每秒4个单位的速度向右运动;在运动过程中,MN的中点为P,OD的中点为Q,请问MN-2PQ的值是否会发生变化?若发生变化,请说明理由;如果没有变化,请求出这个值.

10.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.

(1)若b=-4,则a的值为________.

(2)若OA=3OB,求a的值.

(3)点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.

11.如图,数轴上两点分别表示有理数-2和5,我们用来表示两点之间的距离.

(1)直接写出的值=________;

(2)若数轴上一点表示有理数m,则的值是________;

(3)当代数式∣n +2∣+∣n -5∣的值取最小值时,写出表示n的点所在的位置;(4)若点分别以每秒2个单位长度和每秒3个单位长度的速度同时向数轴负方向运动,求经过多少秒后,点到原点的距离是点到原点的距离的2倍.

12.阅读材料:

如图①,若点B把线段分成两条长度相等的线段AB和BC,则点B叫做线段AC的中点.

回答问题:

(1)如图②,在数轴上,点A所表示的数是﹣2,点B所表示的数是0,点C所表示的数是3.

①若A是线段DB的中点,则点D表示的数是________;

②若E是线段AC的中点,求点E表示的数________.

(2)在数轴上,若点M表示的数是m,点N所表示的数是n,点P是线段MN的中点.①若点P表示的数是1,则m、n可能的值是________(填写符合要求的序号);

(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5;(iv)m=﹣1,n=2

②直接用含m、n的代数式表示点P表示的数________.

13.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.

(1)请真接与出a=________,b=________;

(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值: (3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.

14.我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离。而|5|=|5-0|,即|5-0|表示5和0在数轴上对应的两点之间的距离。类似的,有:|5-3|表示5和3在数轴上对应的两点之间的距离;|5+3|=|5-(-3)|,所以|5+3|表示5和-3在数轴上对应的两点之间的距离。一般地,点A、B在数轴上分别表示数a和b,那么点A和B之间的距离可表示为|a-b|。

利用以上知识:

(1)求代数式|x-1|+|x-2|+|x-3|+…+|x-100|的最小值=________。

(2)求代数式|x-1|+| x-1|+| x-3|+| x-4|的最小值。

15.阅读材料:

我们知道的几何意义是在数轴上数对应的点与原点的距离,即,也就是说表示在数轴上数与数对应的点之间的距离,这个结论可以推广为表示数轴上与对应点之间的距离.

例1:已知,求的值.

解:容易看出,在数轴上与原点距离为2的点的对应数为-2和2,即的值为-2和2.

例2:已知,求的值.

解:在数轴上与的距离为2的点的对应数为3和-1,即的值为3和-1.

仿照阅读材料的解法,求下列各式中的值.

(1)

(2)

(3)由以上探索猜想:对于任何有理数是否有最小值?如果有,写出最小值;如果没有,请说明理由.

16.如图,在数轴上,点为原点,点表示的数为,点表示的数为,且满足

(1)A、B两点对应的数分别为 ________, ________;

(2)若将数轴折叠,使得点与点重合,则原点与数________表示的点重合.

(3)若点A、B分别以4个单位/秒和2个单位/秒的速度相向而行,则几秒后A、B两点相距2个单位长度?

(4)若点A、B以(3)中的速度同时向右运动,点从原点以7个单位/秒的速度向右运动,设运动时间为秒,请问:在运动过程中,的值是否会发生变化?若变化,请用表示这个值;若不变,请求出这个定值.

17.先阅读下面的材料,再解答后面的各题:

现代社会对保密要求越来越高,密码正在成为人们生活的一部分.有一种密码的明文(真实文)按计算机键盘字母排列分解,其中Q,W,E,……,N,M这26个字母依次对应1,2,3,……,25,26这26个自然数(见下表).

Q W E R T Y U I O P A S D

123456710111213

F G H J K L Z X C V B N M

14151617181920212223242526

将明文转成密文,如:,即R变为L;,即A变为

S.

将密文转换成明文,如:,即X变为P;13 3×(13-8)-1

=14,即D变为F.

(1)按上述方法将明文NE T译为密文.

(2)若按上方法将明文译成的密文为DWN,请找出它的明文.

18.已知数轴上点A、B分别表示的数是、 ,记A、B两点间的距离为AB

(1)若a=6,b=4,则AB=________;若a=-6,b=4,则AB=________;

(2)若A、B两点间的距离记为,试问和、有何数量关系?

(3)写出所有符合条件的整数点P,使它到5和-5的距离之和为10,并求所有这些整数的和.

(4)|x-1|+|x+2|取得的值最小为________,|x-1|-|x+2|取得最大值为________.

19.观察下列等式,,把以上三个等式两边分别相加得:.

(1)猜想并写出: ________.

(2)直接写出下面算式的计算结果: =________.

20.

阅读下面材料:

点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.

当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,

①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;

②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a ﹣b|;

③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;

综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.

回答下列问题:

①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;

②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;

③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.

④解方程|x+1|+|x﹣2|=5.

【参】***试卷处理标记,请不要删除

一、解答题

1.(1)解:∵a=﹣2,b=4,c=8,

∴AB=6,BC=4,

∵D为AB中点,F为BC中点,

∴DB=3,BF=2,

∴DF=5

(2)解:①∵点A到原点的距离为3且a<0,

∴a

解析:(1)解:∵a=﹣2,b=4,c=8,

∴AB=6,BC=4,

∵D为AB中点,F为BC中点,

∴DB=3,BF=2,

∴DF=5

(2)解:①∵点A到原点的距离为3且a<0,

∴a=﹣3,

∵点B到点A,C的距离相等,

∴c-b=b-a,

∵c﹣b=b﹣a,a=﹣3,

∴c=2b+3,

答:b、c之间的数量关系为c=2b+3.

②依题意,得x﹣c<0,x-a>0,

∴|x﹣c|=c﹣x,|x-a|=x-a,

∴原式=bx+cx+c﹣x﹣5(x-a)=bx+cx+c﹣x﹣5x+5a=(b+c﹣6)x+c+5a,

∵c=2b+3,

∴原式=(b+2b+3﹣6)x+c+5×(﹣2)=(3b﹣3)x+c-10,

∵当 P 点在运动过程中,原式的值保持不变,即原式的值与x无关,

∴3b﹣3=0,∴b=1.

答:b的值为1

【解析】【分析】(1)先求出AB、BC的长,然后根据中点的定义计算即可;(2)①由B为AC的中点可得,AB=BC,然后根据点B到点A,C的距离相等列式求解即可;

②先去绝对值化简,然后根据当 P 点在运动过程中,原式的值保持不变,即可求出x的值. 2.(1)-4,-3,-2,-1,0,1,2

(2)-5或4

(3)

【解析】【解答】解:(1)∵ |x+4| = |x-(-4)| 表示x与-4两数在数轴上所对应的两点之间的距离, |x-2|

解析:(1)-4,-3,-2,-1,0,1,2

(2)-5或4

(3)

【解析】【解答】解:(1)∵ = 表示x与-4两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,

又∵表示2与-4两数在数轴上所对应的两点之间的距离为6,

∴当数轴上表示x的点在表示-4的点的左侧时,不符合题意,当数轴上表示x的点在表示2的点的右侧时,不符合题意,

当数轴上表示x的点在表示-4的点与表示2的点之间(包括表示-4与2的点)时,

,符合题意,

∴,

∴使,整数是-4,-3,-2,-1,0,1,2.

故答案是:-4,-3,-2,-1,0,1,2;(2)∵ = 表示x与-3两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,

∴当x=-5时,表示-5与-3两数在数轴上所对应的两点之间的距离为2,表示-5与2两数在数轴上所对应的两点之间的距离为7,即:,

∴x=-5符合题意,

当x=4时,表示4与-3两数在数轴上所对应的两点之间的距离为7,表示4与2两数在数轴上所对应的两点之间的距离为2,即:,

∴x=4符合题意,

综上所述:当时,的值是:-5或4.

故答案是:-5或4;(3)∵ = 表示x与-7两数在数轴上所对应的两点之间的距离,表示x与4两数在数轴上所对应的两点之间的距离,

∴当数轴上表示x的点在表示-7的点的左侧时,

当数轴上表示x的点在表示4的点的右侧时,

当数轴上表示x的点在表示-7的点与表示4的点之间(包括表示-7与4的点)时,

∴当取最小值时,.

故答案是:.

【分析】(1)根据绝对值的几何意义,得表示x与-4两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,结合条件,即可求解;(2)根据绝对值的几何意义,得表示x与-3两数在数轴上所对应的两点之间的距离,表示x与2两数在数轴上所对应的两点之间的距离,结合条件,即可求解;(3)根据绝对值的几何意义,得表示x与-7两数在数轴上所对应的两点之间的距离,表示x与4两数在数轴上所对应的两点之间的距离,结合条件,即可求解.

3.(1)解:根据数轴上点的位置得: a(2)解:根据题意得:a+b<0,b-1<0,a-c<0,

则;

(3)解:根据题意得:b<0,a<0,c>0,m=-1-c,

解析:(1)解:根据数轴上点的位置得:;

(2)解:根据题意得:a+b<0,b-1<0,a-c<0,

则;

(3)解:根据题意得:b<0,a<0,c>0,m=-1-c,

∴原式 .

【解析】【分析】(1)根据数轴上点的位置判断即可;(2)由数轴可得a+b<0,b-1<0,a-c<0,然后利用绝对值的代数意义化简即可;(3)根据b<0,a<0,c>0,m=-1-c,进行计算即可.

4.(1)2

;-10

(2)解:①根据题意得,点 P 表示的数为,点 Q 表示的数为 .

②当点 P 、 Q 相距 6 个单位长度时,

若P在Q的左侧,则,解得 t=53 ;

若P在Q

解析:(1)2

;-10

(2)解:①根据题意得,点表示的数为,点表示的数为 .

②当点、相距个单位长度时,若P在Q的左侧,则,解得;

若P在Q的右侧,则,解得,

所以的值为或

【解析】【解答】()因为,所以表示的数为,

因为,所以表示的数为 .

【分析】(1)根据BC,AB的长和点B,A在数轴上的位置,可得到点B,A表示的数;(2)①点P表示的数比-10大4t,点Q表示的数比C小2t;②需要分两种情况讨论:若P在Q的左侧,PQ=6;若P在Q的右侧,PQ=6.

5.(1)-8;2

(2)解:①∵AM=3BM

②∵AM=2BM

整理得 a+2b=6

【解析】【解答】(1)

,所以线段AB的中点对应的数是2

故答案为-8,2

解析:(1)-8;2

(2)解:①∵AM=3BM

②∵AM=2BM

整理得

【解析】【解答】(1)

,所以线段AB的中点对应的数是2

故答案为-8,2

【分析】(1)直接利用有理数的减法即可求出的值;即为中点对应的

数;(2)①根据AM=3BM,可得出 ,利用a,b两点可求出AB之间的距离,进而可求AM的长度,则m的值可求.②可根据AM=2BM之间的关系式,找到a,b之间的一个等式,然后整体代入a+2b+20中即可求值.

6.(1)7

(2)-5,-4,-3,-2,-1, 0, 1, 2

(3)解:|x﹣3|+|x﹣6|有最小值,最小值是3.理由如下:

当x>6时,|x﹣3|+|x﹣6|=x﹣3+x﹣6=2x﹣9

解析:(1)7

(2)-5,-4,-3,-2,-1, 0, 1, 2

(3)解:|x﹣3|+|x﹣6|有最小值,最小值是3.理由如下:

当x>6时,|x﹣3|+|x﹣6|=x﹣3+x﹣6=2x﹣9>3;

当3≤x≤6时,|x﹣3|+|x﹣6|=x﹣3+6﹣x=3;

当x<3时,|x﹣3|+|x﹣6|=3﹣x+6﹣x=9﹣2x>3.

故|x﹣3|+|x﹣6|有最小值,最小值是3

【解析】【解答】(1)|5﹣(﹣2)|=|5+2|=7.

故答案为:7;(2)当x>2时,|x+5|+|x﹣2|=x+5+x﹣2=7,解得:x=2与x>2矛盾,故此种情况不存在;

当﹣5≤x≤2时,|x+5|+|x﹣2|=x+5+2﹣x=7,故﹣5≤x≤2时,使得|x+5|+|x﹣2|=7,故使得|x+5|+|x﹣2|=7的整数是﹣5、﹣4、﹣3、﹣2、﹣1、0、1、2;

当x<﹣5时,|x+5|+|x﹣2|=﹣x﹣5+2﹣x=﹣2x+3=7,得x=﹣5与x<﹣5矛盾,故此种情况不存在.

故答案为:﹣5、﹣4、﹣3、﹣2、﹣1、0、1、2;

【分析】(1)根据题目中的式子和绝对值可以解答本题;(2)利用分类讨论的数学思想可以解答本题;(3)根据题意,利用分类讨论的数学思想可以解答本题.

7.(1)

(2)20062007

(3)原式=.【解析】【解答】(1)

故答案为:.

(2)

故答案为:20162017.

【分析】(1)分子为1,分母为相邻2个数的积,结果等

解析:(1)

(2)

(3)原式=.

【解析】【解答】(1)

故答案为:.

(2)

故答案为:.

【分析】(1)分子为1,分母为相邻2个数的积,结果等于分子为1,分母分别为2个因数的分数的差;

(2)利用(1)规律进行拆项,化简后只剩首位两个数的差,求出结果即可;

(3)根据(1)规律进行变形后然后乘以,求出结果即可.

8.(1)3;3;4;|x+1|;1或-3;-1≤x≤2;解:④.④由③可知,要使最小,则 x 在1和2015之间即可,要使最小,则 x 在2和2014之间即可…… 以此类推,要使最小,

解析:(1)3;3;4;;1或-3;-1≤x≤2;解:④.④由③可知,要使最小,则在1和2015之间即可,要使最小,则在2和2014之间即可…… 以此类推,要使最小,则在1007和1009之间即可,最后还剩余最小时,取即可,当时,原式

【解析】【解答】解:①表示2和5的两点间的距离为,

表示-2和-5的两点之间的距离为,

表示1和-3的两点之间的距离为;

②表示和-1的两点和之间的距离为,

若,则,∴,∴或

③ ,是到的距离,表示到的距离,当在和2之间时,距离之和最小,∴取最小值时,相应的的取值范围是

【分析】①根据(1)中的两点间距离公式可求答案;②根据(1)中的两点间距离公式列出方程求解;③根据线段上的点到两端的距离之和最小可得结果;④根据线段上的点到两端的距离之和最小列出算式计算即可;

9.(1)解:由题意得: |b-3|=5 ,解得:

(2)解:当B在A左侧时,由(1)可知: b=-2 ,设点D运动的时间为t秒,则D表示的数为-2t,当D到A、B两点的距离之和为8时,可得D在B左

解析:(1)解:由题意得:,解得:

(2)解:当B在A左侧时,由(1)可知:,设点D运动的时间为t秒,则D表示的数为-2t,当D到A、B两点的距离之和为8时,可得D在B左侧,且DB+DA=DB+DB+AB=2DB+5=8,故 DB=1.5,即-2-(-2t)=1.5,解得t=1.75

(3)解:在运动过程中,MN-2PQ=4恒成立,理由如下:

当B在A左侧时,由(1)可知:,设点D运动的时间为t秒,则

D表示的数为-2t,M表示的数为-2-t,N表示的数为3+4t;

故MN的中点P表示的数为0.5+1.5t,OD的中点Q表示的数为-t;

则MN-2PQ=[(3+4t)-(-2-t)]-2[(0.5+1.5t)-(-t)]

=5+5t-2(0.5+2.5t)

=5+5t-1-5t

=4

【解析】【分析】(1)根据数轴上两点之间的距离公式即可求解.(2)根据运动速度可表达出D点坐标,根据D到A、B两点的距离之和为8,可知D点在B的左侧,根据两点之间的距离公式即可求解(3)根据运动速度可表达出M、D、N点的坐标,根据中点公式求出P、Q坐标进而求出MN、PQ线段长即可求解.

10.(1)10

(2)解:当A在原点O的右侧时(如图):

设OB=m,列方程得:m+3m=14,

解这个方程得, m=72 ,

所以,OA= 212 ,点A在原点O的右侧,a的值为 212 .

解析:(1)10(2)解:当A在原点O的右侧时(如图):

设OB=m,列方程得:m+3m=14,

解这个方程得,

所以,OA= ,点A在原点O的右侧,a的值为 .

当A在原点的左侧时(如图),

a=-

综上,a的值为± .

(3)解:当点A在原点的右侧,点B在点C的左侧时(如图), c=- .

当点A在原点的右侧,点B在点C的右侧时(如图), c=-8.

当点A在原点的左侧,点B在点C的右侧时,图略,c= .

当点A在原点的左侧,点B在点C的左侧时,图略,c=8.

综上,点c的值为:±8,± .

【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA 的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.(3)画数轴,结合数轴分四种情况讨论计算即可.

11.(1)7

(2)|m+2|

(3)解:n点位于线段AB上(包括A、B两点),即时有最小值7;

即:

(4)解:设经过x秒后点A到原点的距离是点B到原点的距离的2倍,

第一种情解析:(1)7

(2)

(3)解:n点位于线段AB上(包括A、B两点),即时有最小值7;

即:

(4)解:设经过x秒后点A到原点的距离是点B到原点的距离的2倍,

第一种情况:2+2x=2(5-3x),解得:x=1

第二种情况:2+2x=2(3x-5),解得:x=3

答:经过1秒或3秒后点A到原点的距离是点B到原点的距离的2倍.

【解析】【解答】解:(1)

故答案为:7(2)

【分析】(1)根据两点间距离公式求解即可;(2)根据两点间距离公式求解即可;(3)根据n+2和n-5以及两点间距离公式,即可得出n的取值范围;(4)设经过x秒后点A到原点的距离是点B到原点的距离的2倍,利用两点间距离公式分两种情况列出方程,求解即可.

12.(1)﹣4;12 ;

(2)(i)(ii)(iii);m+n2 .

【解析】【解答】解:(1)①点A所表示的数是﹣2,点B所表示的数是0,A是线段DB的中点,

∴点D表示的数是﹣4,

故答

解析:(1)﹣4;;

(2)(i)(ii)(iii); .

【解析】【解答】解:(1)①点A所表示的数是﹣2,点B所表示的数是0,A是线段DB 的中点,

∴点D表示的数是﹣4,

故答案为﹣4;

②点A所表示的数是﹣2,点C所表示的数是3,E是线段AC的中点,

∴点E表示的数为.(2)①点M表示的数是m,点N所表示的数是n,点P是线段MN的中点,点P表示的数是1,

∴1=,即m+n=2,

∴m、n可能的值是:(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5.故答案为(i)(ii)(iii);②点P表示的数为.

【分析】(1)①依据点A所表示的数是-2,点B所表示的数是0,A是线段DB的中点,即可得到点D表示的数;②依据点A所表示的数是-2,点C所表示的数是3,E是线段AC 的中点,即可得到点E表示的数;(2)①依据点M表示的数是m,点N所表示的数是n,点P是线段MN的中点,点P表示的数是1,即可得到m、n可能的值;②依据中点公式即可得到结果.

13.(1)5;6

(2)解:①点M未到达O时(0<t≤2时),

NP=OP=3t,AM=5t,OM=10-5t,MP=3t+10-5t

即3t+10-5t=5t,解得 t=107 ,

②点M到达O返回

解析:(1)5;6

(2)解:①点M未到达O时(0<t≤2时),

NP=OP=3t,AM=5t,OM=10-5t,MP=3t+10-5t

即3t+10-5t=5t,解得 t=,

②点M到达O返回,未到达A点或刚到达A点时,即当(2<t≤4时),

OM=5t-10,AM=20-5t,MP=3t+5t-10

即3t+5t-10=20-5t,解得 t=

③点M到达O返回时,在A点右侧,即t>4时

OM=5t-10,AM=5t-20,MP=3t+5t-10,

即3t+5t-10=5t-20,解得 t=(不符合题意舍去).

综上或;

(3)解:如下图:

根据题意:NO=6t,OM=5t,所以MN=6t+5t=11t

依题意:NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,

解得t=4.此时M对应的数为20.

【解析】【解答】解:(1)∵|a-5|+(b-6)2=0.

∴a-5=0,b-6=0

∴a=5,b=6

故依次填:5,6;

【分析】(1)中根据非负数的性质即可得解;(2)分三种情况,分别表示MP和MA,根据MP=MA列出方程,解方程即可(需注意t>0);(3)依据题意画出图形,根据图形可知MN=NO+OM=11t.M,N,O,A为端点的所有线段的长度和为3MN+OA=142,将MN=11t代入,即可求出t的值,M点表示的数可求.

14.(1)2500

(2)解:1、1……2、2……9、9……16、16,

则最中间的一个数是2,

∴当x=2,

|x-1|+| 12 x-1|+| 13 x-3|+ 14 |x-4|

=|x-1|+

解析:(1)2500

(2)解:1、1……2、2……9、9……16、16,

则最中间的一个数是2,

∴当x=2,

|x-1|+|x-1|+|x-3|+|x-4|

=|x-1|+|x-2|+|x-9|+|x-16|

=(12|2-1|+6|2-2|+4|2-9|+3|2-16)|

=

=.

【解析】【解答】解:(1) 由题意得:|x-1|+|x-2|+|x-3|+…+|x-100|的最小值为:

|50.5-1|+|50.5-2|+|50.5-3|+…+|50.5-100|=2500.

【分析】(1)由于|x-1|+|x-2|+|x-3|+…+|x-100|表示数轴上某点到1、2、3……100的距离之和,因此当x所对应的点在点1和点100最中间时取最小值,这时把x=50.5代入原式求值即可.

(2)先提取将每个绝对值的系数变为整数,然后将12个1,6个2,4个9和3个16排成一组数,则最中间的一个数是2,则把2代入原式求值即是最小值.

15.(1)解:|x|=3 ,在数轴上与原点距离为3的点的对应数为-3和3,即x 的值为-3和3

(2)解:|x+2|=4 ,在数轴上与-2距离为4的点的对应数为-6和2,即x 的值为-6和2;解析:(1)解:,在数轴上与原点距离为3的点的对应数为-3和3,即的值为-3和3

(2)解:,在数轴上与-2距离为4的点的对应数为-6和2,即的值为-6和2;

(3)解:有最小值,最小值为3,

理由是:

∵理解为:在数轴上表示到3和6的距离之和,

∴当在3与6之间的线段上(即)时:

即的值有最小值,最小值为.

【解析】【分析】(1)由阅读材料中的方法求出的值即可;(2)由阅读材料中的方法求出的值即可;(3)根据题意得出原式最小时的范围,并求出最小值即可.16.(1)-8;6

(2)-2

(3)解:①相遇前相距2个单位长度:

t=[6-(-8)-2]÷(4+2)=1.5(秒)

②相遇后相距2个单位长度:

t=[6-(-8)+2]÷(4+2)=2(秒)

解析:(1)-8;6

(2)-2

(3)解:①相遇前相距2个单位长度:

t=[6-(-8)-2]÷(4+2)=1.5(秒)

②相遇后相距2个单位长度:

t=[6-(-8)+2]÷(4+2)=2(秒)

综上所述:1.5秒或2秒后A、B两点相距2个单位长度.

(4)解:AP+2OB-OP的值不会发生变化.

∵OP=7t,OA=-8+4t,

∴AP=7t-(-8+4t)=3t+8,

∵OB=6+2t,

∴AP+2OB-OP=3t+8+2(6+2t)-7t=3t+8+12+4t-7t=20,

∴AP+2OB-OP的值不会发生变化,定值为20.

【解析】【解答】(1)∵,

∴a+8=0,b-6=0,

解得:a=-8,b=6,

故答案为:-8,6(2)∵a=-8,b=6,将数轴折叠,使得A点与B点重合,

∴对折点表示的数是[6+(-8)]÷2=-1,

∵-1与原点的距离是1,

∴原点关于-1的对称点表示的数是-2,即原点O与数-2表示的点重合,

故答案为:-2

【分析】根据绝对值及平方的非负数性质即可求出a、b的值;(2)根据a、b的值可得AB对折点表示的数,根据两点间的距离即可得答案;(3)分两种情况:①相遇前相距2个单位长度;②相遇后相距2个单位长度;利用距离=时间×速度即可得答案;(4)根据两点间距离公式,利用距离=时间×速度用t分别表示出AP、OB、OP的长,计算的值即可得答案.

17.(1)解:

即NET密文为MQP .

(2)解:

即密文DWN的明文为FYC .

【解析】【分析】(1)由图表找出N、E、T对

解析:(1)解:

即NET密文为MQP.

(2)解:

即密文DWN的明文为FYC .

【解析】【分析】(1)由图表找出N、E、T对应的自然数,再根据变换公式变成密文即可;(2)由图表找出D、W、N对应的自然数,再根据变换公式变成明文即可. 18.(1)2;10

(2)解:d和a、b之间的数量关系:d=|a-b|

(3)解:∵5-(-5)=5+5=10,

∴点P在5和-5之间

∴符合条件的整数点P表示的数为-5、-4、-3、-2、-1

解析:(1)2;10

(2)解:d和a、b之间的数量关系:d=|a-b|

(3)解:∵5-(-5)=5+5=10,

∴点P在5和-5之间

∴符合条件的整数点P表示的数为-5、-4、-3、-2、-1、0、1、2、3、4、5,

∴这些整数的和=-5-4-3-2-1+0+1+2+3+4+5=0(4)3;3

【解析】【解答】解:(1)若a=6,b=4,则AB=6-4=2;

若a=-6,b=4,则AB=4-(-6)=10;

( 4 )设|x-1|表示点C到1的距离,|x+2|表示点C到-2的距离,

∵1到-2的距离是1-(-2)=3,

∴当点C在-1到2(含-1和2)之间时,|x-1|+|x+2|取得的值最小,最小值是3;

当点C在2的左边(含2)时,|x-1|-|x+2|取得的值最大,最大值是3.

【分析】(1)根据各数据分别计算即可得解;(2)根据计算结果列出算式即可;(3)求出-5到5的距离正好等于10,可知-5到5之间的所有整数点都可以,然后求解即可;(4)设|x-1|表示点C到1的距离,|x+2|表示点C到-2的距离,则|x-1|+|x+2|表示两个距离的和,|x-1|-|x+2|表示两个距离的差,根据此意义即可求得.

19.(1)

(2)20162017

【解析】【解答】解:(1);

故答案为: .(2).

=20162017 .

故答案为: 20162017 .

【分析】(1)分子是1,分母是两

解析:(1)

(2)

【解析】【解答】解:(1);

故答案为: .(2).

故答案为:.

【分析】(1)分子是1,分母是两个连续自然数的乘积,可以拆成以这两个自然数为分母,分子为1的两个分数的差,由此规律得出答案即可;(2)根据规律将式子的每一项拆分,拆分后抵消得出答案即可.

20.解:①数轴上表示2和5的两点之间的距离是|2﹣5|=3;

数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣(﹣5)|=3;

数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4

②数轴上x

解析:解:①数轴上表示2和5的两点之间的距离是|2﹣5|=3;

数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣(﹣5)|=3;

数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4

②数轴上x与-1的两点间的距离为|x-(-1)|=|x+1|,如果|AB|=2,则x+1=±2,解得x=1或-3.

③根据题意得x+1≥0且x-2≤0,则-1≤x≤2;

④解方程|x+1|+|x﹣2|=5.

当x+1>0,x-2>0,则(x+1)+(x-2)=5,解得x=3

当x+1<0,x-2<0,则-(x+1)-(x-2)=5,解得x=-2

当x+1与x-2异号,则等式不成立.

所以答案为:3或-2.

【解析】【分析】①②直接根据数轴上A、B两点之间的距离|AB|=|a﹣b|.代入数值运用绝对值即可求任意两点间的距离.

③根据绝对值的性质,可得到一个一元一次不等式组,通过求解,就可得出x的取值范围.

④根据题意分三种情况:当x≤﹣1时,当﹣1<x≤2时,当x>2时,分别求出方程的解即可.下载本文

显示全文
专题