视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
三角形相似之动点问题一
2025-09-29 16:34:09 责编:小OO
文档
三角形相似之动点问题一

 

二、操作:如图,在正方形ABCD中,P是CD上一动点(与C、D不重合),使三角板的直角顶点与点P重合,并且一条直角边始终经过点B,另一直角边与正方形的某一边所在直线交于点E.

探究:①观察操作结果,哪一个三角形与△BPC相似,写出你的结论,并说明理由;

②当点P位于CD的中点时,你找到的三角形与△BPC的周长比和面积比分别是多少?

三、如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,设运动时间为x.

(1)当x为何值时,PQ∥BC;

(2)△APQ能否与△CQB相似?若能,求出AP的长;若不能,请说明理由.

四 、如图,已知在等腰梯形ABCD中,AB∥CD,AB<CD,AB=10,BC=3.

(1)如果M为AB上一点,且满足∠DMC=∠A,求AM的长;

(2)如果点M在AB边上移动(点M与A,B不重合),且满足∠DMN=∠A,MN交BC延长线于N,设AM=x,CN=y,求y关于x的函数解析式,并写出x的取值范围.

五、如图,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=x,CE=y.

(1)如果∠BAC=30°,∠DAE=105°,试确定y与x之间的函数关系式;

(2)如果∠BAC=α,∠DAE=β,当α,β满足怎样的关系时,(1)中y与x之间的函数关系式还成立?试说明理由.

六、如图1,在直角梯形ABCD中,AD∥BC,顶点D,C分别在AM,BN上运动(点D不与A重合,点C不与B重合),E是AB上的动点(点E不与A,B重合),在运动过程中始终保持DE⊥CE,且AD+DE=AB=a.

(1)求证:△ADE∽△BEC;    (2)当点E为AB边的中点时(如图2),求证:①AD+BC=CD;②DE,CE分别平分∠ADC,∠BCD;

(3)设AE=m,请探究:△BEC的周长是否与m值有关,若有关请用含m的代数式表示△BEC的周

七、如图,在△ABC中,∠BAC=90°,AD是BC边上的高,E是BC边上的一个动点(不与B,C重合),EF⊥AB,EG⊥AC,垂足分别为F,G.

(1)求证:;

(2)FD与DG是否垂直?若垂直,请给出证明;若不垂直,请说明理由;

(3)当AB=AC时,△FDG为等腰直角三角形吗?并说明理由.

八、阅读理解:如图1,在直角梯形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,易证△ABP∽△PCD,从而得到BP•PC=AB•CD,解答下列问题.

(1)探究:如图2,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:BP•PC=AB•CD;

(2)拓展应用:如图3,在四边形ABCD中,AB=4,BC=10,CD=6,∠B=∠C=60°,AO⊥BC于点O,以O为顶点,以BC所在直线为x轴,建立平面直角坐标系,点P为线段OC上一动点(不与端点O、C重合)

(i)当∠APD=60°时,求点P的坐标;

(ii)过点P作PE⊥PD,交y轴于点E,设PO=x,OE=y,求y与x的函数关系式,并写出自变量x的取值范围.

三角形相似之动点问题二

九、如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.

(1)求证:AB•AF=CB•CD;

(2)已知AB=15cm,BC=9cm,P是线段DE上的动点.设DP=x cm,梯形BCDP的面积为ycm2.

①求y关于x的函数关系式.

②y是否存在最大值?若有求出这个最大值,若不存在请说明理由.

 

十、如图1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分∠CDB交边BC于点E,EM⊥BD垂足为M,EN⊥CD垂足为N.

(1)当AD=CD时,求证:DE∥AC;

(2)探究:AD为何值时,△BME与△CNE相似?

(3)探究:AD为何值时,四边形MEND与△BDE的面积相等?

十一、如图1在平面直角坐标系中,O是坐标原点,▱ABCD的顶点A的坐标为(-2,0),点D的坐标为(0,2),点B在x轴的正半轴上,点E为线段AD的中点,过点E的直线l与x轴交于点F,与射线DC交于点G.

(1)求∠DCB的度数;

(2)连接OE,以OE所在直线为对称轴,△OEF经轴对称变换后得到△OEF',记直线EF'与射线DC的交点为H.

①如图2,当点G在点H的左侧时,求证:△DEG∽△DHE;

②若△EHG的面积为3,请直接写出点F的坐标.

十二、如图,已知线段AB∥CD,AD与BC相交于点K,E是线段AD上一动点.

(1)若BK=  KC,求的值;

(2)连接BE,若BE平分∠ABC,则当AE=  AD时,猜想线段AB、BC、CD三者之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当AE=  AD(n>2),而其余条件不变时,线段AB、BC、CD三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.

十三、如图,Rt△ABC中,∠A=30°,BC=10cm,点Q在线段BC上从B向C运动,点P在线段BA上从B向A运动.Q、P两点同时出发,运动的速度相同,当点Q到达点C时,两点都停止运动.作PM⊥PQ交CA于点M,过点P分别作BC、CA的垂线,垂足分别为E、F.

(1)求证:△PQE∽△PMF;

(2)当点P、Q运动时,请猜想线段PM与MA的大小有怎样的关系?并证明你的猜想;

(3)设BP=x,△PEM的面积为y,求y关于x的函数关系式,当x为何值时,y有最大值,并将这个值求出来.

十四、如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.

(1)求AC、BC的长;

(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;

(3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC是否相似,请说明理由;

(4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小?若存在,求出最小周长;若不存在,请说明理由.                                        

三角形相似之动点问题三

十五、如图,点C为线段AB上任意一点(不与A、B重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和等腰△BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接PC.

(1)求证:△ACE≌△DCB;

(2)请你判断△AMC与△DMP的形状有何关系并说明理由;

(3)求证:∠APC=∠BPC.

十六、如图,点P是正方形ABCD边AB上一点(不与点A,B重合),连接PD并将线段PD绕点P顺时针方向旋转90°得到线段PE,PE交边BC于点F,连接BE,DF.

(1)求证:∠ADP=∠EPB;

(2)求∠CBE的度数;

(3)当的值等于多少时,△PFD∽△BFP?并说明理由

十七、已知:如图,在梯形ABCD中,AD∥BC,∠DCB=90°,E是AD的中点,点P是BC边上的动点(不与点B重合),EP与BD相交于点O.

(1)当P点在BC边上运动时,求证:△BOP∽△DOE;

(2)设(1)中的相似比为k,若AD:BC=2:3.请探究:当k为下列三种情况时,四边形ABPE是什么四边形?①当k=1时,是________平行四边形;②当k=2时,是  ________ ;③当k=3时,是  ________.并证明k=2时的结论.

十八、如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE-EF-FC-CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC-CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).

(1)D,F两点间的距离是多少?  

(2)射线QK能否把四边形CDEF分成面积相等的两部分?若能,求出t的值;若不能,说明理由;

(3)当点P运动到折线EF-FC上,且点P又恰好落在射线QK上时,求t的值;

(4)连接PG,当PG∥AB时,请直接写出t的值.

十九、如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC上一个动点(不与B、C重合),在AC上取E点,使∠ADE=45度.

(1)求证:△ABD∽△DCE;

(2)设BD=x,AE=y,求y关于x的函数关系式;

(3)当:△ABD∽△DCE是等腰三角形时,求AE的长. 

二十、等腰△ABC,AB=AC=8,∠BAC=120°,P为BC的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点P,三角板绕P点旋转.

(1)如图a,当三角板的两边分别交AB、AC于点E、F时.求证:△BPE∽△CFP;

(2)操作:将三角板绕点P旋转到图b情形时,三角板的两边分别交BA的延长线、边AC于点E、F.

①探究1:△BPE与△CFP还相似吗?(只需写出结论)

②探究2:连接EF,△BPE与△PFE是否相似?请说明理由;

③设EF=m,△EPF的面积为S,试用m的代数式表示S.

 

二一、三角形纸片ABC,∠C=90°,AB=2BC=12.将纸片折叠使点A总是落在BC边上,记为点D,EF是折痕,如右图.

(1)当△DEF是以∠EDF为顶角的等腰三角形时,求△DCF的面积;

(2)在BC边上是否存在一点D,使以D,E,F为顶点的三角形和以D,E,B为顶点的三角形相似?若存在,求出相似比;若不存在,说明理由. 

二二、在△ABC中,∠BAC=90°,AB<AC,M是BC边的中点,MN⊥BC交AC于点N.动点P从点B出发沿射线BA以每秒厘米的速度运动.同时,动点Q从点N出发沿射线NC运动,且始终保持MQ丄MP.设运动时间为t秒(t>0).

(1)△PBM与△QNM相似吗?以图1为例说明理由:

(2)若∠ABC=60°,AB=4厘米.

①求动点Q的运动速度;

②设△APQ的面积为S(平方厘米),求S与t的函数关系式.下载本文

显示全文
专题