1.(1)利用短期生产的总产量(TP)、平均产量(AP)和边际产量(MP)之间的关系,可以完成对该表的填空,其结果如下表:
| 可变要素的数量 | 可变要素的总产量 | 可变要素平均产量 | 可变要素的边际产量 |
| 1 | 2 | 2 | 2 |
| 2 | 12 | 6 | 10 |
| 3 | 24 | 8 | 12 |
| 4 | 48 | 12 | 24 |
| 5 | 60 | 12 | 12 |
| 6 | 66 | 11 | 6 |
| 7 | 70 | 10 | 4 |
| 8 | 70 | 35/4 | 0 |
| 9 | 63 | 7 | -7 |
2.
(1).过TPL曲线任何一点的切线的斜率就是相应的MPL的值。
(2)连接TPL曲线上热和一点和坐标原点的线段的斜率,就是相应的APL的值。
(3)当MPL>APL时,APL曲线是上升的。
当MPL 3.解答: (1)由生产数Q=2KL-0.5L2-0.5K2,且K=10,可得短期生产函数为: Q=20L-0.5L2-0.5*102 =20L-0.5L2-50 于是,根据总产量、平均产量和边际产量的定义,有以下函数: 劳动的总产量函数TPL=20L-0.5L2-50 劳动的平均产量函数APL=20-0.5L-50/L 劳动的边际产量函数MPL=20-L (2)关于总产量的最大值: 20-L=0 解得L=20 所以,劳动投入量为20时,总产量达到极大值。 关于平均产量的最大值: -0.5+50L-2=0 L=10(负值舍去) 所以,劳动投入量为10时,平均产量达到极大值。 关于边际产量的最大值: 由劳动的边际产量函数MPL=20-L可知,边际产量曲线是一条斜率为负的直线。考虑到劳动投入量总是非负的,所以,L=0时,劳动的边际产量达到极大值。 (3)当劳动的平均产量达到最大值时,一定有APL=MPL。由(2)可知,当劳动为10时,劳动的平均产量APL达最大值,及相应的最大值为: APL的最大值=10 MPL=20-10=10 很显然APL=MPL=10 4.解答: (1)生产函数表示该函数是一个固定投入比例的生产函数,所以,厂商进行生产时,Q=2L=3K.相应的有L=18,K=12 (2)由Q=2L=3K,且Q=480,可得: L=240,K=160 又因为PL=2,PK=5,所以 C=2*240+5*160=1280 即最小成本。 5、 (1)思路:先求出劳动的边际产量与要素的边际产量 根据最优要素组合的均衡条件,整理即可得。 (a)K=(2PL/PK)L (b)K=( PL/PK)1/2*L (c)K=(PL/2PK)L (d)K=3L (2)思路:把PL=1,PK=1,Q=1000,代人扩展线方程与生产函数即可求出 (a)L=200*4-1/3K=400*4-1/3 (b) L=2000 K=2000 (c) L=10*21/3 K=5*21/3 (d) L=1000/3 K=1000 6.(1).Q=AL1/3K1/3 F( λl,λk )=A(λl)1/3(λK)1/3=λAL1/3K1/3=λf(L,K) 所以,此生产函数属于规模报酬不变的生产函数。 (2)假定在短期生产中,资本投入量不变,以表示;而劳动 投入量可变,以L表示。 对于生产函数Q=AL1/3K1/3,有: MPL=1/3AL-2/3K1/3,且d MPL/dL=-2/9 AL-5/3 -2/3<0 这表明:在短期资本投入量不变的前提下,随着一种可变要素劳动投入量的增加,劳动的边际产量是递减的。 相类似的,在短期劳动投入量不变的前提下,随着一种可变要素资本投入量的增加,资本的边际产量是递减的。 7、(1)当α0=0时,该生产函数表现为规模保持不变的特征 (2)基本思路: 在规模保持不变,即α0=0,生产函数可以把α0省去。 求出相应的边际产量 再对相应的边际产量求导,一阶导数为负。即可证明边际产量都是递减的。 8.(1).由题意可知,C=2L+K, Q=L2/3K1/3 为了实现最大产量:MPL/MPK=W/r=2. 当C=3000时,得.L=K=1000. Q=1000. (2).同理可得。800=L2/3K1/3.2K/L=2 L=K=800 C=2400 9利用图说明厂商在既定成本条件下是如何实现最大产量的最优要素组合的。 解答:以下图为例,要点如下: 分析三条等产量线,Q1、Q2、Q3与等成本线AB之间的关系.等产量线Q3虽然高于等产量线Q2。但惟一的等成本线AB与等产量线Q3既无交点又无切点。这表明等产量曲线Q3所代表的产量是企业在既定成本下无法实现的产量。再看Q1虽然它与惟一的等成本线相交与a、b两点,但等产量曲线Q1所代表的产量是比较低的。所以只需由a点出发向右或由b点出发向左沿着既定的等成本线 AB改变要素组合,就可以增加产量。因此只有在惟一的等成本线AB和等产量曲线Q2的相切点E,才是实现既定成本下的最大产量的要素组合。 10、利用图说明厂商在既定产量条件下是如何实现最小成本的最优要素组合的。 解答:如图所示,要点如下: (1)由于本题的约束条件是既定的产量,所以,在图中,只有一条等产量曲线;此外,有三条等成本线以供分析,并从中找出相应的最小成本。 (2)在约束条件即等产量曲线给定的条件下, A”B”虽然代表的成本较低,但它与既定的产量曲线Q既无交点又无切点,它无法实现等产量曲线Q所代表的产量,等成本曲线AB虽然与既定的产量曲线Q相交与a、b两点,但它代表的成本过高,通过沿着等产量曲线Q由a点向E点或由b点向E点移动,都可以获得相同的产量而使成本下降。所以只有在切点 E,才是在既定产量条件下实现最小成本的要素组合。由此可得,厂商实现既定产量条件下成本最小化的均衡条件是MRL/w=MPK/r。下载本文