班级: 姓名:
一、选择题(本大题共10小题,每题3分,共30分)
1.的倒数是( )
A. B. C. D.
2.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简的结果为( )
A.2a+b B.-2a+b C.b D.2a-b
3.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )
A. B. C. D.
4.如图,数轴上的点A,B,O,C,D分别表示数-2,-1,0,1,2,则表示数的点P应落在
A.线段AB上 B.线段BO上 C.线段OC上 D.线段CD上
5.若关于x的不等式mx- n>0的解集是,则关于x的不等式的解集是( )
A. B. C. D.
6.关于x的方程(为常数)根的情况下,下列结论中正确的是( )
A.两个正根 B.两个负根
C.一个正根,一个负根 D.无实数根
7.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:
接力中,自己负责的一步出现错误的是( )
A.只有乙 B.甲和丁 C.乙和丙 D.乙和丁
8.一次函数y=ax+b和反比例函数y在同一直角坐标系中的大致图象是( )
A. B.
C. D.
9.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为( )
A.56° B.62° C.68° D.78°
10.如图,能判定EB∥AC的条件是( )
A.∠C=∠1 B.∠A=∠2
C.∠C=∠3 D.∠A=∠1
二、填空题(本大题共6小题,每小题3分,共18分)
1.的立方根是__________.
2.分解因式:ab2﹣4ab+4a=________.
3.若式子在实数范围内有意义,则x的取值范围是__________.
4.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是__________.
5.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE=______.
6.如图,在矩形中,,对角线与相交于点,,垂足为点,且平分,则的长为__________.
三、解答题(本大题共6小题,共72分)
1.解方程:
2.关于的一元二次方程有两个不相等的实数根.
(1)求的取值范围;
(2)当取满足条件的最大整数时,求方程的根.
3.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF
(1)求证:▱ABCD是菱形;
(2)若AB=5,AC=6,求▱ABCD的面积.
4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.
已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.
5.某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球 B:乒乓球C:羽毛球 D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共有 人;
(2)请你将条形统计图(2)补充完整;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)
| 甲 | 乙 | 丙 | 丁 | |
| 甲 | ﹣﹣﹣ | (乙,甲) | (丙,甲) | (丁,甲) |
| 乙 | (甲,乙) | ﹣﹣﹣ | (丙,乙) | (丁,乙) |
| 丙 | (甲,丙) | (乙,丙) | ﹣﹣﹣ | (丁,丙) |
| 丁 | (甲,丁) | (乙,丁) | (丙,丁) | ﹣﹣﹣ |
(1)求出y与x的函数关系式;
(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?
(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?
参
一、选择题(本大题共10小题,每题3分,共30分)
1、A
2、C
3、B
4、B
5、B
6、C
7、D
8、A
9、C
10、D
二、填空题(本大题共6小题,每小题3分,共18分)
1、-2
2、a(b﹣2)2.
3、
4、15°
5、4-
6、.
三、解答题(本大题共6小题,共72分)
1、原方程无解.
2、(1)且;(2),
3、(1)略;(2)S平行四边形ABCD =24
4、河宽为17米
5、解:(1)200.
(2)补全图形,如图所示:
(3)列表如下:
∵所有等可能的结果为12种,其中符合要求的只有2种,
∴恰好选中甲、乙两位同学的概率为.
6、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.下载本文