一、一元二次方程
1.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.
(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;
(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.4万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)
【答案】详见解析
【解析】
试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;
(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.
试题解析:(1)设年平均增长率为x,根据题意得:
10(1+x)2=14.4,
解得x=﹣2.2(不合题意舍去)x=0.2,
答:年平均增长率为20%;
(2)设每年新增汽车数量最多不超过y万辆,根据题意得:
2009年底汽车数量为14.4×90%+y,
2010年底汽车数量为(14.4×90%+y)×90%+y,
∴(14.4×90%+y)×90%+y≤15.4,
∴y≤2.
答:每年新增汽车数量最多不超过2万辆.
考点:一元二次方程—增长率的问题
2.解方程:x2-2x=2x+1.
【答案】x1=2- ,x2=2+.
【解析】
试题分析:根据方程,求出系数a、b、c,然后求一元二次方程的根的判别式,最后根据求根公式求解即可.
试题解析:方程化为x2-4x-1=0.
∵b2-4ac=(-4)2-4×1×(-1)=20,
∴x==2± ,
∴x1=2- ,x2=2+.
3.已知关于x的一元二次方程(x﹣3)(x﹣4)﹣m2=0.
(1)求证:对任意实数m,方程总有2个不相等的实数根;
(2)若方程的一个根是2,求m的值及方程的另一个根.
【答案】(1)证明见解析;(2)m的值为±,方程的另一个根是5.
【解析】
【分析】
(1)先把方程化为一般式,利用根的判别式△=b2-4ac证明判断即可;
(2)根据方程的根,利用代入法即可求解m的值,然后还原方程求出另一个解即可.
【详解】
(1)证明:
∵(x﹣3)(x﹣4)﹣m2=0,
∴x2﹣7x+12﹣m2=0,
∴△=(﹣7)2﹣4(12﹣m2)=1+4m2,
∵m2≥0,
∴△>0,
∴对任意实数m,方程总有2个不相等的实数根;
(2)解:∵方程的一个根是2,
∴4﹣14+12﹣m2=0,解得m=±,
∴原方程为x2﹣7x+10=0,解得x=2或x=5,
即m的值为±,方程的另一个根是5.
【点睛】
此题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程的根的判别式与根的关系是关键.
当△=b2-4ac>0时,方程有两个不相等的实数根;
当△=b2-4ac=0时,方程有两个相等的实数根;
当△=b2-4ac<0时,方程没有实数根.
4.已知关于x的二次函数的图象与x轴有2个交点.
(1)求k的取值范围;
(2)若图象与x轴交点的横坐标为,且它们的倒数之和是,求k的值.
【答案】(1)k<- ;(2)k=﹣1
【解析】
试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b2-4ac的范围可求解出k的值;
(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k的值.
试题解析:(1)∵二次函数y=x2-(2k-1)x+k2+1的图象与x轴有两交点,
∴当y=0时,x2-(2k-1)x+k2+1=0有两个不相等的实数根.
∴△=b2-4ac=[-(2k-1)]2-4×1×(k2+1)>0.
解得k<- ;
(2)当y=0时,x2-(2k-1)x+k2+1=0.
则x1+x2=2k-1,x1•x2=k2+1,
∵=== ,
解得:k=-1或k= (舍去),
∴k=﹣1
5.发现思考:已知等腰三角形ABC的两边分别是方程x2﹣7x+10=0的两个根,求等腰三角形ABC三条边的长各是多少?下边是涵涵同学的作业,老师说他的做法有错误,请你找出错误之处并说明错误原因.
涵涵的作业
解:x2﹣7x+10=0
a=1 b=﹣
∵b2﹣4ac=9>0
∴x==
∴x1=5,x2=2
所以,当腰为5,底为2时,等腰三角形的三条边为5,5,2.
当腰为2,底为5时,等腰三角形的三条边为2,2,5.
探究应用:请解答以下问题:
已知等腰三角形ABC的两边是关于x的方程x2﹣mx+﹣=0的两个实数根.
(1)当m=2时,求△ABC的周长;
(2)当△ABC为等边三角形时,求m的值.
【答案】错误之处及错误原因见解析;(1)当m=2时,△ABC的周长为;(2)当△ABC为等边三角形时,m的值为1.
【解析】
【分析】根据三角形三边关系可以得到等腰三角形的三条边不能为2、2、5.
(1)先解方程,再确定边,从而求周长;(2)是等边三角形,则两根相等,即△=(﹣m)2﹣4(﹣)=m2﹣2m+1,可求得m.
【详解】解:错误之处:当2为腰,5为底时,等腰三角形的三条边为2、2、5.
错误原因:此时不能构成三角形.
(1)当m=2时,方程为x2﹣2x+=0,
∴x1=,x2=.
当为腰时,+<,
∴、、不能构成三角形;
当为腰时,等腰三角形的三边为、、,
此时周长为++=.
答:当m=2时,△ABC的周长为.
(2)若△ABC为等边三角形,则方程有两个相等的实数根,
∴△=(﹣m)2﹣4(﹣)=m2﹣2m+1=0,
∴m1=m2=1.
答:当△ABC为等边三角形时,m的值为1.
【点睛】本题考核知识点:二元一次方程的运用.解题关键点:熟练掌握二元一次方程的解法和等腰三角形性质.
6.有一个人患了流感,经过两轮传染后共有36人患了流感.
(1)求每轮传染中平均一个人传染了几个人?
(2)如果不及时控制,第三轮将又有多少人被传染?
【答案】(1)5;(2)180
【解析】
【分析】
(1)设平均一人传染了x人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;
(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.
【详解】
(1)设每轮传染中平均一个人传染了x个人,根据题意得:
x+1+(x+1)x=36,
解得:x=5或x=﹣7(舍去).
答:每轮传染中平均一个人传染了5个人;
(2)根据题意得:5×36=180(个),
答:第三轮将又有180人被传染.
【点睛】
本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.
7.已知关于x的一元二次方程x2+(2m+3)x+m2=0有两根α,β.
(1)求m的取值范围;
(2)若,则m的值为多少?
【答案】(1);(2)m的值为3.
【解析】
【分析】
(1)根据△≥0即可求解,
(2)化简,利用韦达定理求出α+β,αβ,代入解方程即可.
【详解】
解:(1)由题意知,(2m+3)2﹣4×1×m2≥0,
解得:m≥-;
(2)由根与系数的关系得:α+β=﹣(2m+3),αβ=m2,
∵即=-1,
∴=-1,整理得m2﹣2m﹣3=0
解得:m1=﹣1,m1=3,
由(1)知m≥-,
∴m1=﹣1应舍去,
∴m的值为3.
【点睛】
本题考查了一元二次方程根的判别式以及韦达定理,对根进行判断是正确解题的关键.
8.某社区决定把一块长,宽的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边为何值时,活动区的面积达到?
【答案】当时,活动区的面积达到
【解析】
【分析】
根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答.
【详解】
解:设绿化区宽为y,则由题意得
.
即
列方程:
解得 (舍),.
∴当时,活动区的面积达到
【点睛】
本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.
9.已知关于x的方程mx2+(3﹣m)x﹣3=0(m为实数,m≠0).
(1) 试说明:此方程总有两个实数根.
(2) 如果此方程的两个实数根都为正整数,求整数m的值.
【答案】(1)≥0;(2)m=-1,-3.
【解析】
分析: (1)先计算判别式得到△=(m-3)2-4m•(-3)=(m+3)2,利用非负数的性质得到△≥0,然后根据判别式的意义即可得到结论;
(2)利用公式法可求出x1=,x2=-1,然后利用整除性即可得到m的值.
详解: (1)证明:∵m≠0,
∴方程mx2+(m-3)x-3=0(m≠0)是关于x的一元二次方程,
∴△=(m-3)2-4m×(-3)
=(m+3)2,
∵(m+3)2≥0,即△≥0,
∴方程总有两个实数根;
(2)解:∵x= ,
∴x1=-,x2=1,
∵m为正整数,且方程的两个根均为整数,
∴m=-1或-3.
点睛: 本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了解一元二次方程.
10.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.
(1)该项绿化工程原计划每天完成多少米2?
(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?
【答案】(1)2000;(2)2米
【解析】
【分析】
(1)设未知数,根据题目中的的量关系列出方程;
(2)可以通过平移,也可以通过面积法,列出方程
【详解】
解:(1)设该项绿化工程原计划每天完成x米2,
根据题意得:﹣= 4
解得:x=2000,
经检验,x=2000是原方程的解;
答:该绿化项目原计划每天完成2000平方米;
(2)设人行道的宽度为x米,根据题意得,
(20﹣3x)(8﹣2x)=56
解得:x=2或x=(不合题意,舍去).
答:人行道的宽为2米.
11.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.
例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n有多少个点?
我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是 、 .
请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:
(1)第5个点阵中有 个圆圈;第n个点阵中有 个圆圈.
(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.
【答案】60个,6n个;(1)61;3n2﹣3n+1,(2)小圆圈的个数会等于271,它是第10个点阵.
【解析】
分析:根据规律求得图10中黑点个数是6×10=60个;图n中黑点个数是6n个;
(1)第2个图中2为一块,分为3块,余1,
第2个图中3为一块,分为6块,余1;
按此规律得:第5个点阵中5为一块,分为12块,余1,得第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,
(2)代入271,列方程,方程有解则存在这样的点阵.
详解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,
故答案为:60个,6n个;
(1)如图所示:第1个点阵中有:1个,
第2个点阵中有:2×3+1=7个,
第3个点阵中有:3×6+1=17个,
第4个点阵中有:4×9+1=37个,
第5个点阵中有:5×12+1=60个,
…
第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,
故答案为:60,3n2﹣3n+1;
(2)3n2﹣3n+1=271,
n2﹣n﹣90=0,
(n﹣10)(n+9)=0,
n1=10,n2=﹣9(舍),
∴小圆圈的个数会等于271,它是第10个点阵.
点睛:本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.
12.关于x的一元二次方程x2﹣(m﹣3)x﹣m2=0.
(1)证明:方程总有两个不相等的实数根;
(2)设这个方程的两个实数根为x1,x2,且|x1|=|x2|﹣2,求m的值及方程的根.
【答案】(1)证明见解析;(2)x1=﹣1+,x2=﹣1﹣或
【解析】
试题分析:(1)根据一元二次方程的判别式△=b2﹣4ac的结果判断即可,当△>0时,有两个不相等的实数根,当△=0时,有两个相等的实数根,当△<0时,方程没有实数根;
(2)根据一元二次方程根与系数的关系x1+x2=-,x1•x2=,表示出两根的关系,得到x1,x2异号,然后根据绝对值的性质和两根的关系分类讨论即可求解.
试题解析:(1)一元二次方程x2﹣(m﹣3)x﹣m2=0,
∵a=1,b=﹣(m﹣3)=3﹣m,c=﹣m2,
∴△=b2﹣4ac=(3﹣m)2﹣4×1×(﹣m2)=5m2﹣6m+9=5(m﹣)2+,
∴△>0,
则方程有两个不相等的实数根;
(2)∵x1•x2==﹣m2≤0,x1+x2=m﹣3,
∴x1,x2异号,
又|x1|=|x2|﹣2,即|x1|﹣|x2|=﹣2,
若x1>0,x2<0,上式化简得:x1+x2=﹣2,
∴m﹣3=﹣2,即m=1,
方程化为x2+2x﹣1=0,
解得:x1=﹣1+,x2=﹣1﹣,
若x1<0,x2>0,上式化简得:﹣(x1+x2)=﹣2,
∴x1+x2=m﹣3=2,即m=5,
方程化为x2﹣2x﹣25=0,
解得:x1=1﹣,x2=1+.
13.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:
当a>0,b>0时:
∵()2=a﹣2+b≥0
∴a+b≥2,当且仅当a=b时取等号.
请利用上述结论解决以下问题:
(1)请直接写出答案:当x>0时,x+的最小值为 .当x<0时,x+的最大值为 ;
(2)若y=,(x>﹣1),求y的最小值;
(3)如图,四边形ABCD的对角线AC、BD相交于点O,△AOB、△COD的面积分别为4和9,求四边形ABCD面积的最小值.
【答案】(1)2;﹣2.(2)y的最小值为9;(3)四边形ABCD面积的最小值为25.
【解析】
【分析】
(1)当x>0时,按照公式a+b≥2(当且仅当a=b时取等号)来计算即可;当x<0时,﹣x>0,0,则也可以按公式a+b≥2(当且仅当a=b时取等号)来计算;
(2)将y的分子变形,分别除以分母,展开,将含x的项用题中所给公式求得最小值,再加上常数即可;
(3)设S△BOC=x,已知S△AOB=4,S△COD=9,由三角形面积公式可知:S△BOC:S△COD=S△AOB:S△AOD,用含x的式子表示出S△AOD,再表示出四边形的面积,根据题中所给公式求得最小值,加上常数即可.
【详解】
(1)当x>0时,x22;
当x<0时,﹣x>0,0.
∵﹣x22,∴则x(﹣x)≤﹣2,∴当x>0时,x的最小值为 2.当x<0时,x的最大值为﹣2.
故答案为:2,﹣2.
(2)∵x>﹣1,∴x+1>0,∴y=(x+1)5≥25=4+5=9,∴y的最小值为9.
(3)设S△BOC=x,已知S△AOB=4,S△COD=9
则由等高三角形可知:S△BOC:S△COD=S△AOB:S△AOD,∴x:9=4:S△AOD,∴S△AOD,∴四边形ABCD面积=4+9+x13+225.
当且仅当x=6时,取等号,∴四边形ABCD面积的最小值为25.
【点睛】
本题考查了配方法在最值问题中的应用.对不能直接应用公式的,需要正确变形才可以应用.
14.已知关于的方程有两个不相等的实数根,.
求的取值范围.
是否存在实数,使方程的两实数根互为相反数?
【答案】(1)且;(2)不存在,理由见解析
【解析】
【分析】
(1)因为方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根x1,x2.得出其判别式△>0,可解得k的取值范围;
(2)假设存在两根的值互为相反数,根据根与系数的关系,列出对应的不等式即可求出k的值.
【详解】
(1)方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根x1,x2,可得:k﹣1≠0且△=﹣12k+13>0,解得:k<且k≠1;
(2)假设存在两根的值互为相反数,设为 x1,x2.
∵x1+x2=0,∴﹣=0,∴k=.
又∵k<且k≠1,∴k不存在.
【点睛】
本题主要考查了根与系数的关系,属于基础题,关键掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.
15.如图,在四边形中, , , , , ,动点P从点D出发,沿线段 的方向以每秒2个单位长的速度运动;动点Q从点 C出发,在线段 上以每秒1个单位长的速度向点 运动;点P, 分别从点D,C同时出发,当点 运动到点 时,点Q随之停止运动,设运动的时间为t秒).
(1)当 时,求 的面积;
(2)若四边形为平行四边形,求运动时间 .
(3)当 为何值时,以 B、P、Q为顶点的三角形是等腰三角形?
【答案】(1);(2) ;(3)或.
【解析】
【分析】
(1)过点作于,则PM=DC,当t=2时,算出BQ,求出面积即可;(2)当四边形是平行四边形时,,即,解出即可;(3)以 B、P、Q为顶点的三角形是等腰三角形,分三种情况,①,②,③分别求出t即可.
【详解】
解 :(1)过点作于,则四边形为矩形.
∴,
∵,
当t=2时,则BQ=14,
则=×14×12=84;
(2)当四边形是平行四边形时,,
即
解得:
∴当时,四边形是平行四边形.
(3)由图可知,CM=PD=2t,CQ=t,若以B、P、Q为顶点的三角形是等腰三角形,可以分为以下三种情况:
①若,在 中,,由得 解得: ;
②若,在 中,,由得 ,即,
此时, ,
所以此方程无解,所以 ;
③若,由得 ,
得 ,(不合题意,舍去);
综上所述,当或时,以B、P、Q为顶点的三角形是等腰三角形.
【点睛】
本题是对四边形即可中动点问题的考查,熟练掌握动点中线段的表示、平行四边形和等腰三角形的性质及判断是解决本题的关键,难度适中.下载本文