视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
传染病问题中的SIR模型
2025-09-29 16:35:33 责编:小OO
文档
传染病问题中的SIR模型

                            

摘要:

2003年春来历不明的SARS病毒突袭人间,给人们的生命财产带来极大的危害。长期以来,建立传染病的数学模型来描述传染病的传播过程,分析受感染人数的变化规律,探索制止传染病蔓延的手段等,一直是我国及全世界有关专家和关注的课题。

不同类型的传染病的传播过程有其各自不同的特点,我们不是从医学的角度一一分析各种传染病的传播,而是从一般的传播机理分析建立各种模型,如简单模型,SI模型,SIS模型,SIR模型等。在这里我采用SIR(Susceptibles,Infectives,Recovered)模型来研究如天花,流感,肝炎,麻疹等治愈后均有很强的免疫力的传染病,它主要沿用由Kermack与McKendrick在1927年采用动力学方法建立的模型。应用传染病动力学模型来描述疾病发展变化的过程和传播规律,预测疾病发生的状态,评估各种控制措施的效果,为预防控制疾病提供最优决策依据, 维护人类健康与社会经济发展。

关键字:传染病;动力学;SIR模型。

一﹑模型假设

1.在疾病传播期内所考察的地区范围不考虑人口的出生、死亡、流动等种群动力因素。总人口数N(t)不变,人口始终保持一个常数N。人群分为以下三类:易感染者(Susceptibles),其数量比例记为s(t),表示t时刻未染病但有可能被该类疾病传染的人数占总人数的比例;感染病者(Infectives),其数量比例记为i(t),表示t时刻已被感染成为病人而且具有传染力的人数占总人数的比例;恢复者(Recovered),其数量比例记为r(t),表示t时刻已从染病者中移出的人数(这部分人既非已感染者,也非感染病者,不具有传染性,也不会再次被感染,他们已退出该传染系统。)占总人数的比例。

2.病人的日接触率(每个病人每天有效接触的平均人数)为常数λ,日治愈率(每天被治愈的病人占总病人数的比例)为常数μ,显然平均传染期为1/μ,传染期接触数为σ=λ/μ。该模型的缺陷是结果常与实际有一定程度差距,这是因为模型中假设有效接触率传染力是不变的。

二﹑模型构成

在以上三个基本假设条件下,易感染者从患病到移出的过程框图表示如下:

在假设1中显然有:

s(t) + i(t) + r(t) = 1                          (1)

对于病愈免疫的移出者的数量应为

                                 (2)

不妨设初始时刻的易感染者,染病者,恢复者的比例分别为(>0),(>0),=0.

SIR基础模型用微分方程组表示如下:

                                   (3)      

s(t) , i(t)的求解极度困难,在此我们先做数值计算来预估计s(t) , i(t)的一般变化规律。

三﹑数值计算

在方程(3)中设λ=1,μ=0.3,i(0)= 0.02,s(0)=0.98,用MATLAB软件编程:

function y=ill(t,x)

a=1;b=0.3;

y=[a*x(1)*x(2)-b*x(1);-a*x(1)*x(2)];

ts=0:50;

x0=[0.02,0.98];

[t,x]=ode45('ill',ts,x0);

plot(t,x(:,1),t,x(:,2))

pause

plot(x(:,2),x(:,1))

输出的简明计算结果列入表1。i(t) , s(t)的图形以下两个图形,i~s图形称为相轨线,初值i(0)=0.02,s(0)=0.98相当于图2中的P0点,随着t的增,(s,i)沿轨线自右向左运动.由表1、图1、图2可以看出,i(t)由初值增长至约t=7时达到最大值,然后减少,t→∞,i→0,s(t)则单调减少,t→∞,s→0.0398. 并分析i(t),s(t)的一般变化规律.

t  0  1  2  3  4  5    6  7  8
i(t)0.0200

0.03900.07320.12850.20330.27950.33120.34440.3247
s(t)0.98000.95250.90190.81690.69270.54380.39950.28390.2027
 t  9  10  15   20   25  30  35  40  45
i(t)0.28630.24180.07870.02230.00610.00170.00050.00010
s(t)0.14930.11450.05430.04340.04080.04010.03990.03990.0398
                        表1  i(t),s(t)的数值计算结果

四﹑相轨线分析

    我们在数值计算和图形观察的基础上,利用相轨线讨论解i(t),s(t)的性质。

    i ~ s平面称为相平面,相轨线在相平面上的定义域(s,i)∈D为

         D = {(s,i)|  s≥0,i≥0 , s + i ≤1}                    (4)

 在方程(3)中消去并注意到σ的定义,可得

                     ,                         (5)   

    所以:                        (6)

利用积分特性容易求出方程(5)的解为:         (7)

在定义域D内,(6)式表示的曲线即为相轨线,如图3所示.其中箭头表示了随着时间t的增加s(t)和i(t)的变化趋向.

下面根据(3),(17)式和图9分析s(t),i(t)和r(t)的变化情况(t→∞时它们的极限值分别记作,和)。

1.不论初始条件s0,i0如何,病人消失将消失,即:                  (8)

其证明如下:          

首先,由(3)  而故存在;  由(2)而故存

在;再由(1)知存在。

其次,若则由(1),对于充分大的t 有, 这将导致,与存在相矛盾.从图形上看,不论相轨线从P1或从P2点出发,它终将与s轴相交(t充分大).

2.最终未被感染的健康者的比例是,在(7)式中令i=0得到,是方程

                                        (9)

在(0,1/σ)内的根.在图形上是相轨线与s轴在(0,1/σ)内交点的横坐标.

     3.若>1/σ,则开始有,i(t)先增加, 令=0,可得当s=1/σ时,i(t)达到最大值:

                                                (10) 

然后s<1/σ时,有,所以i(t)减小且趋于零,s(t)则单调减小至,如图3中由P1(,)出发的轨线.

4.若1/σ,则恒有,i(t)单调减小至零,s(t)单调减小至,如图3中由P2(s0,i0)出发的轨线.

    可以看出,如果仅当病人比例i(t)有一段增长的时期才认为传染病在蔓延,那么1/σ是一个阈值,当>1/σ(即σ>1/s0)时传染病就会蔓延.而减小传染期接触数σ,即提高阈值1/σ使得≤1/σ(即σ ≤1/),传染病就不会蔓延(健康者比例的初始值是一定的,通常可认为接近1)。

    并且,即使>1/σ,从(19),(20)式可以看出, σ减小时,增加(通过作图分析),降低,也控制了蔓延的程度.我们注意到在σ=λμ中,人们的卫生水平越高,日接触率λ越小;医疗水平越高,日治愈率μ越大,于是σ越小,所以提高卫生水平和医疗水平有助于控制传染病的蔓延.

    从另一方面看,是传染期内一个病人传染的健康者的平均数,称为交换数,其含义是一病人被个健康者交换.所以当即时必有 .既然交换数不超过1,病人比例i(t)绝不会增加,传染病不会蔓延。

五﹑群体免疫和预防    

根据对SIR模型的分析,当时传染病不会蔓延.所以为制止蔓延,除了提高卫生和医疗水平,使阈值1/σ变大以外,另一个途径是降低,这可以通过比如预防接种使群体免疫的办法做到.

    忽略病人比例的初始值有,于是传染病不会蔓延的条件可以表为

                            (11)

这就是说,只要通过群体免疫使初始时刻的移出者比例(即免疫比例)满足(11)式,就可以制止传染病的蔓延。

这种办法生效的前提条件是免疫者要均匀分布在全体人口中,实际上这是很难做到的。据估计当时印度等国天花传染病的接触数 σ=5,由(11)式至少要有80%的人接受免疫才行。据世界卫生组织报告,即使花费大量资金提高,也因很难做到免疫者的均匀分布,使得天花直到1977年才在全世界根除。而有些传染病的σ更高,根除就更加困难。

六﹑模型验证    

上世纪初在印度孟买发生的一次瘟疫中几乎所有病人都死亡了。死亡相当于移出传染系统,有关部门记录了每天移出者的人数,即有了的实际数据,Kermack等人用这组数据对SIR模型作了验证。

首先,由方程(2),(3)可以得到

    ,两边积分得

       

所以:                                            (12)

再                           (13)

当时,取(13)式右端Taylor展开式的前3项得:

                                 

在初始值=0 下解高阶常微分方程得:                                

                                 (14)

其中, 从而容易由(14)式得出:

                              (15)  

    然后取定参数 s0, σ等,画出(15)式的图形,如图4中的曲线,实际数据在图中用圆点表示,可以看出,理论曲线与实际数据吻合得相当不错。

      

七﹑被传染比例的估计   

在一次传染病的传播过程中,被传染人数的比例是健康者人数比例的初始值与之差,记作x,即                                                   (16)

当i0很小,s0接近于1时,由(9)式可得

                                                    (17)

取对数函数Taylor展开的前两项有

                                                  (18)                             

  记,可视为该地区人口比例超过阈值的部分。当        

时(18)式给出  

                            (19)    

这个结果表明,被传染人数比例约为的2倍。对一种传染病,当该地区的卫生和医疗水平不变,即不变时,这个比例就不会改变。而当阈值提高时,减小,于是这个比例就会降低。

八﹑评注

该模型采用了数值计算,图形观察与理论分析相结合的方法,先有感性认识(表1,图1,图2),再用相轨线作理论分析,最后进行数值验证和估算,可以看作计算机技术与建模方法的巧妙配合。可取之处在于它们比较全面地达到了建模的目的,即描述传播过程、分析感染人数的变化规律,预测传染病高潮到来时刻,度量传染病蔓延的程度并探索制止蔓延的手段和措施。下载本文

显示全文
专题