视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
实际问题与二次函数
2025-09-29 16:36:12 责编:小OO
文档
实际问题与二次函数

考点一:最大面积问题

【类型一】利用二次函数求最大面积

 小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.

(1)求S与x之间的函数关系式,并写出自变量x的取值范围;

(2)当x是多少时,矩形场地面积S最大?最大面积是多少?

解析:利用矩形面积公式就可确定二次函数.(1)矩形一边长为x,则另一边长为,从而表示出面积;(2)利用配方法求出顶点坐标.

解:(1)根据题意,得S=·x=-x2+30x.自变量x的取值范围是0<x<30.

(2)S=-x2+30x=-(x-15)2+225,∵a=-1<0,∴S有最大值,即当x=15(米)时,S最大值=225平方米.

方法总结:二次函数与日常生活的例子还有很多,体现了二次函数这一数学模型应用的广泛性.解决这类问题关键是在不同背景下学会从所给信息中提取有效信息,建立实际问题中变量间的二次函数关系.

【类型二】利用二次函数判断面积取值成立的条件

 用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.

(1)求y关于x的函数关系式;

(2)当x为何值时,围成的养鸡场面积为60平方米?

(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.

解析:(1)先表示出矩形的另一边长,再利用矩形的面积公式表示出函数关系式;(2)已知矩形的面积,可以转化为解一元二次方程;(3)求出y的最大值,与70比较大小,即可作出判断.

解:(1)y=x(16-x)=-x2+16x(0<x<16);

(2)当y=60时,-x2+16x=60,解得x1=10,x2=6.所以当x=10或6时,围成的养鸡场的面积为60平方米;

(3)方法一:当y=70时,-x2+16x=70,整理得:x2-16x+70=0,由于Δ=256-280=-24<0,因此此方程无实数根,所以不能围成面积为70平方米的养鸡场.方法二:y=-x2+16x=-(x-8)2+,当x=8时,y有最大值,即能围成的养鸡场的最大面积为平方米,所以不能围成70平方米的养鸡场方法总结:与面积有关的函数与方程问题,可通过面积公式列出函数关系式或方程.

【类型三】最大面积方案设计

 施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图所示).

(1)直接写出点M及抛物线顶点P的坐标;

(2)求出这条抛物线的函数关系式;

(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A、D点在抛物线上,B、C点在地面OM上.为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少,请你帮施工队计算一下.

解:(1)M(12,0),P(6,6).

(2)设这条抛物线的函数关系式为y=a(x-6)2+6,因为抛物线过O(0,0),所以a(0-6)2+6=0,解得,a=-,所以这条抛物线的函数关系式为:y=-(x-6)2+6,即y=-x2+2x.

(3)设OB=m米,则点A的坐标为(m,-m2+2m),所以AB=DC=-m2+2m.根据抛物线的轴对称,可得OB=CM=m,所以BC=12-2m,即AD=12-2m,所以l=AB+AD+DC=-m2+2m+12-2m-m2+2m=-m2+2m+12=-(m-3)2+15.所以当m=3,即OB=3米时,三根木杆长度之和l的最大值为15米.

考点二:最大利润问题

【类型一】利用解析式确定获利最大的条件

 为了推进知识和技术创新、节能降耗,使我国的经济能够保持可持续发展.某工厂经过技术攻关后,产品质量不断提高,该产品按质量分为10个档次,生产第一档次(即最低档)的新产品一天生产76件,每件利润10元,每提高一个档次,每件可节约能源消耗2元,但一天产量减少4件.生产该产品的档次越高,每件产品节约的能源就越多,是否获得的利润就越大?请你为该工厂的生产提出建议.

解析:在这个工业生产的实际问题中,随着生产产品档次的变化,所获利润也在不断的变化,于是可建立函数模型;找出题中的数量关系:一天的总利润=一天生产的产品件数×每件产品的利润;其中,“每件可节约能源消耗2元”的意思是利润增加2元;利用二次函数确定最大利润,再据此提出自己认为合理的建议.

解:设该厂生产第x档的产品一天的总利润为y元,则有y=[10+2(x-1)][76-4(x-1)]=-8x2+128x+0=-8(x-8)2+1152.当x=8时,y最大值=1152.由此可见,并不是生产该产品的档次越高,获得的利润就越大.建议:若想获得最大利润,应生产第8档次的产品.(其他建议,只要合理即可)

【类型二】利用图象解析式确定最大利润

 某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图①所示(一条线段)的变化趋势,每千克成本y2(元)与销售时间第x月满足函数关系式y2=mx2-8mx+n,其变化趋势如图②所示.

(1)求y2的解析式;

(2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?

解:(1)由题意可得,函数y2的图象经过两点(3,6),(7,7),∴解得∴y2的解析式为y2=x2-x+(1≤x≤12).

(2)设y1=kx+b,∵函数y1的图象过两点(4,11),(8,10),∴解得∴y1的解析式为y1=-x+12(1≤x≤12).设这种水果每千克所获得的利润为w元.则w=y1-y2=(-x+12)-(x2-x+)=-x2+x+,∴w=-(x-3)2+(1≤x≤12),∴当x=3时,w取最大值,∴第3月销售这种水果,每千克所获的利润最大,最大利润是元/千克.

探究点一:建立二次函数模型

【类型一】运动轨迹问题

 某学校初三年级的一场篮球比赛中,如图,队员甲正在投篮,已知球出手时离地面高米,与篮圈中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行轨迹为抛物线,篮圈距地面3米.

(1)建立如图所示的平面直角坐标系,问此球能否准确投中?

(2)此时,若对方队员乙在甲面前1米处跳起盖帽拦截,已知乙的最大摸高为3.1米,那么他能否获得成功?

解析:这是一个有趣的、贴近学生日常生活的应用题,由条件可得到出手点、最高点(顶点)和篮圈的坐标,再由出手点、顶点的坐标可求出函数表达式;判断此球能否准确投中的问题就是判断代表篮圈的点是否在抛物线上;判断盖帽拦截能否获得成功,就是比较当x=1时函数y的值与最大摸高3.1米的大小.

解:(1)由条件可得到球出手点、最高点和篮圈的坐标分别为A(0,),B(4,4),C(7,3),其中B是抛物线的顶点.设二次函数关系式为y=a(x-h)2+k,将点A、B的坐标代入,可得y=-(x-4)2+4.将点C的坐标代入解析式,得左边=右边,即点C在抛物线上,所以此球一定能投中.

(2)将x=1代入解析式,得y=3.因为3.1>3,所以盖帽能获得成功.

【类型二】拱桥、涵洞问题

 (2014·湖北潜江)如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米.水面下降1米时,水面的宽度为________米.

解析:如图,建立直角坐标系,设这条抛物线为y=ax2,把点(2,-2)代入,得-2=a×22,a=-,∴y=-x2,当y=-3时,-x2=-3,x=±.故答案为2.

方法总结:在解决呈抛物线形状的实际问题时,通常的步骤是:(1)建立合适的平面直角坐标系;(2)将实际问题中的数量转化为点的坐标;(3)设出抛物线的解析式,并将点的坐标代入函数解析式,求出函数解析式;(4)利用函数关系式解决实际问题.

 如图,某隧道横截面的上下轮廓线分别由抛物线对称的一部分和矩形的一部分构成,最大高度为6米,底部宽度为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.

(1)直接写出点M及抛物线顶点P的坐标;

(2)求出这条抛物线的函数关系式;

(3)若要搭建一个矩形“支撑架”AD-DC-CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?

解析:解决问题的思路是首先建立适当的坐标系,挖掘条件确定图象上点的坐标M(12,0)和抛物线顶点P(6,6);已知顶点坐标,可设二次函数关系式为y=a(x-6)2+6,可利用待定系数法求出二次函数关系式;再利用二次函数上某些点的坐标特征,求出有关“支撑架”总长AD+DC+CB二次函数的关系式,根据二次函数的性质,求出最值,从而解决问题.

解:(1)根据题意,分别求出M(12,0),最大高度为6米,点P的纵坐标为6,底部宽度为12米,所以点P的横坐标为6,即P(6,6).

(2)设此函数关系式为y=a(x-6)2+6.因为函数y=a(x-6)2+6经过点(0,3),所以3=a(0-6)2+6,即a=-.所以此函数关系式为y=-(x-6)2+6=-x2+x+3.

(3)设A(m,0),则B(12-m,0),C(12-m,-m2+m+3),D(m,-m2+m+3).即“支撑架”总长AD+DC+CB=(-m2+m+3)+(12-2m)+(-m2+m+3)=-m2+18.因为此二次函数的图象开口向下.所以当m=0时,AD+DC+CB有最大值为18.下载本文

显示全文
专题