视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
2012年浙江省中考数学试卷
2025-09-29 16:34:51 责编:小OO
文档
2012年浙江省绍兴市中考数学试卷

一、选择题(共10小题,每小题4分,满分40分)

1.(2012•绍兴)3的相反数是(  )

 A.

3B.

﹣3

C.

D.

2.(2012•绍兴)下列运算正确的是(  )

 A.

x+x=x2

B.

x6÷x2=x3

C.

x•x3=x4

D.

(2x2)3=6x5

3.(2012•绍兴)据科学家估计,地球年龄大约是4 600 000 000年,这个数用科学记数法表示为(  )

 A.

4.6×108

B.

46×108

C.

4.6×109

D.

0.46×1010

4.(2012•绍兴)如图所示的几何体,其主视图是(  )

 A.

B.

C.

D.

5.(2012•绍兴)化简可得(  )

 A.

B.

C.

D.

6.(2012•绍兴)在如图所示的平面直角坐标系内,画在透明胶片上的▱ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,﹣1)处,则此平移可以是(  )

 A.

先向右平移5个单位,再向下平移1个单位

 B.

先向右平移5个单位,再向下平移3个单位

 C.

先向右平移4个单位,再向下平移1个单位

 D.

先向右平移4个单位,再向下平移3个单位

7.(2012•绍兴)如图,AD为⊙O的直径,作⊙O的内接正三角形ABC,甲、乙两人的作法分别是:

甲:1、作OD的中垂线,交⊙O于B,C两点,

2、连接AB,AC,△ABC即为所求的三角形      

乙:1、以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点.

2、连接AB,BC,CA.△ABC即为所求的三角形.

对于甲、乙两人的作法,可判断(  )

 A.

甲、乙均正确B.

甲、乙均错误C.

甲正确、乙错误D.

甲错误,乙正确
8.(2012•绍兴)如图,扇形DOE的半径为3,边长为的菱形OABC的顶点A,C,B分别在OD,OE,上,若把扇形DOE围成一个圆锥,则此圆锥的高为(  )

 A.

B.

2

C.

D.

9.(2012•绍兴)在一条笔直的公路边,有一些树和路灯,每相邻的两盏灯之间有3棵树,相邻的树与树,树与灯间的距离是10cm,如图,第一棵树左边5cm处有一个路牌,则从此路牌起向右510m~550m之间树与灯的排列顺序是(  )

 A.

B.

C.

D.

10.(2012•绍兴)如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设Pn﹣1Dn﹣2的中点为Dn﹣1,第n次将纸片折叠,使点A与点Dn﹣1重合,折痕与AD交于点Pn(n>2),则AP6的长为(  )

 A.

B.

C.

D.

二、填空题(共6小题,每小题5分,满分30分)

11.(2012•绍兴)分解因式:a3﹣a= _________ .

12.(2012•绍兴)教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=﹣(x﹣4)2+3,由此可知铅球推出的距离是 _________ m.

13.(2012•绍兴)箱子中装有4个只有颜色不同的球,其中2个白球,2个红球,4个人依次从箱子中任意摸出一个球,不放回,则第二个人摸出红球且第三个人摸出白球的概率是 _________ .

14.(2012•绍兴)小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家,父亲在报亭看了10分钟报纸后,用15分钟返回家,则表示父亲、母亲离家距离与时间之间的关系是 _________ (只需填序号).

15.(2012•绍兴)如图,在矩形ABCD中,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.则BC:AB的值为 _________ .

16.(2012•绍兴)如图,矩形OABC的两条边在坐标轴上,OA=1,OC=2,现将此矩形向右平移,每次平移1个单位,若第1次平移得到的矩形的边与反比例函数图象有两个交点,它们的纵坐标之差的绝对值为0.6,则第n次(n>1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为 _________ (用含n的代数式表示)

三、解答题(共8小题,满分80分)

17.(2012•绍兴)(1)计算:﹣22+﹣2cos60°+|﹣3|;

(2)解不等式组:.

18.(2012•绍兴)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.

(1)若∠ACD=114°,求∠MAB的度数;

(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN.

19.(2012•绍兴)如图1,某超市从一楼到二楼的电梯AB的长为16.50米,坡角∠BAC为32°.

(1)求一楼于二楼之间的高度BC(精确到0.01米);

(2)电梯每级的水平级宽均是0.25米,如图2.小明跨上电梯时,该电梯以每秒上升2级的高度运行,10秒后他上升了多少米(精确到0.01米)?备用数据:sin32°=0.5299,con32°=0.8480,tan32°=6249.

20.(2012•绍兴)一分钟投篮测试规定,得6分以上为合格,得9分以上为优秀,甲、乙两组同学的一次测试成绩如下:

成绩(分)456789
甲组(人)125214
乙组(人)114522

(1)请你根据上述统计数据,把下面的图和表补充完整;

一分钟投篮成绩统计分析表:

统计量平均分方差中位数合格率优秀率
甲组2.56680.0%26.7%
乙组6.81.7686.7%13.3%
(2)下面是小明和小聪的一段对话,请你根据(1)中的表,写出两条支持小聪的观点的理由.

 

21.(2012•绍兴)联想三角形外心的概念,我们可引入如下概念.

定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.

举例:如图1,若PA=PB,则点P为△ABC的准外心.

应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=AB,求∠APB的度数.

探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.

22.(2012•绍兴)小明和同桌小聪在课后复习时,对课本“目标与评定”中的一道思考题,进行了认真的探索.

【思考题】如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B将向外移动多少米?

(1)请你将小明对“思考题”的解答补充完整:

解:设点B将向外移动x米,即BB1=x,

则B1C=x+0.7,A1C=AC﹣AA1=﹣0.4=2

而A1B1=2.5,在Rt△A1B1C中,由+=得方程 _________ ,

解方程得x1= _________ ,x2= _________ ,

∴点B将向外移动 _________ 米.

(2)解完“思考题”后,小聪提出了如下两个问题:

【问题一】在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?

【问题二】在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?

请你解答小聪提出的这两个问题.

23.(2012•绍兴)把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚度忽略不计).

(1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方形盒子.

①要使折成的长方形盒子的底面积为484cm2,那么剪掉的正方形的边长为多少?

②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.

(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2,求此时长方形盒子的长、宽、高(只需求出符合要求的一种情况).

24.(2012•绍兴)如图,矩形OABC的两边在坐标轴上,连接AC,抛物线y=x2﹣4x﹣2经过A,B两点.

(1)求A点坐标及线段AB的长;

(2)若点P由点A出发以每秒1个单位的速度沿AB边向点B移动,1秒后点Q也由点A出发以每秒7个单位的速度沿AO,OC,CB边向点B移动,当其中一个点到达终点时另一个点也停止移动,点P的移动时间为t秒.

①当PQ⊥AC时,求t的值;

②当PQ∥AC时,对于抛物线对称轴上一点H,∠HOQ>∠POQ,求点H的纵坐标的取值范围.

2012年浙江省杭州市中考数学试卷

一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确的答案.

1.(2012•杭州)计算(2﹣3)+(﹣1)的结果是(  )

  A.﹣2  B.0  C.1  D.2

2.(2012•杭州)若两圆的半径分别为2cm和6cm,圆心距为4cm,则这两圆的位置关系是(  )

  A.内含  B.内切  C.外切  D.外离

3.(2012•杭州)一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是(  )

A.摸到红球是必然事件              B.摸到白球是不可能事件  

C.摸到红球比摸到白球的可能性相等  D.摸到红球比摸到白球的可能性大

4.(2012•杭州)已知平行四边形ABCD中,∠B=4∠A,则∠C=(  )

  A.18°  B.36°  C.72°  D.144°

5.(2012•杭州)下列计算正确的是(  )

A.(﹣p2q)3=﹣p5q3         B.(12a2b3c)÷(6ab2)=2ab  

C.3m2÷(3m﹣1)=m﹣3m2   D.(x2﹣4x)x﹣1=x﹣4

6.(2012•杭州)如图是杭州市区人口的统计图.则根据统计图得出的下列判断,正确的是(  )

A.其中有3个区的人口数都低于40万               B.只有1个区的人口数超过百万  

C.上城区与下城区的人口数之和超过江干区的人口数  D.杭州市区的人口数已超过600万

7.(2012•杭州)已知m=,则有(  )

  A.5<m<6  B.4<m<5  C.﹣5<m<﹣4  D.﹣6<m<﹣5

8.(2012•杭州)如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则(  )

A.点B到AO的距离为sin54°        B.点B到AO的距离为tan36°  

C.点A到OC的距离为sin36°sin54°   D.点A到OC的距离为cos36°sin54°

9.(2012•杭州)已知抛物线y=k(x+1)(x﹣)与x轴交于点A,B,与y轴交于点C,则能使△ABC为等腰三角形的抛物线的条数是(  )

  A.2  B.3  C.4  D.5

10.(2012•杭州)已知关于x,y的方程组,其中﹣3≤a≤1,给出下列结论:

①是方程组的解;

②当a=﹣2时,x,y的值互为相反数;

③当a=1时,方程组的解也是方程x+y=4﹣a的解;

④若x≤1,则1≤y≤4.

其中正确的是(  )

  A.①②  B.②③  C.②③④  D.①③④

二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整的填写答案.

11.(2012•杭州)数据1,1,1,3,4的平均数是 _________ ;众数是 _________ .

12.(2012•杭州)化简得 _________ ;当m=﹣1时,原式的值为 _________ .

13.(2012•杭州)某企业向银行贷款1000万元,一年后归还银行1065.6多万元,则年利率高于 ________ %.

14.(2012•杭州)已知(a﹣)<0,若b=2﹣a,则b的取值范围是 _________ .

15.(2012•杭州)已知一个底面为菱形的直棱柱,高为10cm,体积为150cm3,则这个棱柱的下底面积为 ______ cm2;若该棱柱侧面展开图的面积为200cm2,记底面菱形的顶点依次为A,B,C,D,AE是BC边上的高,则CE的长为 _________ cm.

16.(2012•杭州)如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为 _________ .

三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或演算步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.

17.(2012•杭州)化简:2[(m﹣1)m+m(m+1)][(m﹣1)m﹣m(m+1)].若m是任意整数,请观察化简后的结果,你发现原式表示一个什么数?

18.(2012•杭州)当k分别取﹣1,1,2时,函数y=(k﹣1)x2﹣4x+5﹣k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.

19.(2012•杭州)如图,是数轴的一部分,其单位长度为a,已知△ABC中,AB=3a,BC=4a,AC=5a.

(1)用直尺和圆规作出△ABC(要求:使点A,C在数轴上,保留作图痕迹,不必写出作法);

(2)记△ABC的外接圆的面积为S圆,△ABC的面积为S△,试说明>π.

20.(2012•杭州)有一组互不全等的三角形,它们的边长均为整数,每个三角形有两条边的长分别为5和7.

(1)请写出其中一个三角形的第三边的长;

(2)设组中最多有n个三角形,求n的值;

(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率.

21.(2012•杭州)如图,在梯形ABCD中,AD∥BC,AB=CD,分别以AB,CD为边向外侧作等边三角形ABE和等边三角形DCF,连接AF,DE.

(1)求证:AF=DE;

(2)若∠BAD=45°,AB=a,△ABE和△DCF的面积之和等于梯形ABCD的面积,求BC的长.

22.(2012•杭州)在平面直角坐标系内,反比例函数和二次函数y=k(x2+x﹣1)的图象交于点A(1,k)和点B(﹣1,﹣k).

(1)当k=﹣2时,求反比例函数的解析式;

(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围;

(3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边的直角三角形时,求k的值.

23.(2012•杭州)如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT于点C,OB⊥AT于点B,已知∠EAT=30°,AE=3,MN=2.

(1)求∠COB的度数;

(2)求⊙O的半径R;

(3)点F在⊙O上(是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在⊙O上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比.

2012年浙江省宁波市中考数学试卷

一.选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求)

1.(2012•宁波)(﹣2)0的值为(  )

 A.

﹣2

B.

0C.

1D.

2
2.(2012•宁波)下列交通标志图案是轴对称图形的是(  )

 A.

B.

C.

D.

3.(2012•宁波)一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到白球的概率为(  )

 A.

B.

C.

D.

1
4.(2012•宁波)据宁波市统计局年报,去年我市人均生产总值为104485元,104485元用科学记数法表示为(  )

 A.

1.04485×106元

B.

0.104485×106元

C.

1.04485×105元

D.

10.4485×104元

5.(2012•宁波)我市某一周每天的最高气温统计如下:27,28,29,29,30,29,28(单位:℃),则这组数据的极差与众数分别为(  )

 A.

2,28

B.

3,29

C.

2,27

D.

3,28

6.(2012•宁波)下列计算正确的是(  )

 A.

a6÷a2=a3

B.

(a3)2=a5

C.

D.

7.(2012•宁波)已知实数x,y满足,则x﹣y等于(  )

 A.

3B.

﹣3

C.

1D.

﹣1

8.(2012•宁波)如图,在Rt△ABC中,∠C=90°,AB=6,cosB=,则BC的长为(  )

 A.

4B.

2

C.

D.

9.(2012•宁波)如图是某物体的三视图,则这个物体的形状是(  )

 A.

四面体B.

直三棱柱C.

直四棱柱D.

直五棱柱
10.(2012•宁波)如图是老年活动中心门口放着的一个招牌,这个招牌是由三个特大号的骰子摞在一起而成的.每个骰子的六个面的点数分别是1到6,其中可以看见7个面,其余11个面是看不见的,则看不见的面上的点数总和是(  )

 A.

41B.

40C.

39D.

38
11.(2012•宁波)如图,用邻边分别为a,b(a<b)的矩形硬纸板裁出以a为直径的两个半圆,再裁出与矩形的较长边、两个半圆均相切的两个小圆.把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,从而做成两个圣诞帽(拼接处材料忽略不计),则a与b满足的关系式是(  )

 A.

b=a

B.

b=a

C.

b=

D.

b=a

12.(2012•宁波)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为(  )

 A.

90B.

100C.

110D.

121

二.填空题(每小题3分,共18分)

13.(2012•宁波)写出一个比4小的正无理数 _________ .

14.(2012•宁波)分式方程的解是 _________ .

15.(2012•宁波)如图是七年级(1)班学生参加课外兴趣小组人数的扇形统计图.如果参加外语兴趣小组的人数是12人,那么参加绘画兴趣小组的人数是 _________ 人.

16.(2012•宁波)如图,AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,

则∠EAB= _________ 度.

17.(2012•宁波)把二次函数y=(x﹣1)2+2的图象绕原点旋转180°后得到的图象的解析式为 _________ .

18.(2012•宁波)如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为 _________ .

三.解答题(本大题有8题,共66分)

19.(2012•宁波)计算:.

20.(2012•宁波)用同样大小的黑色棋子按如图所示的规律摆放:

(1)第5个图形有多少黑色棋子?

(2)第几个图形有2013颗黑色棋子?请说明理由.

21.(2012•宁波)如图,已知一次函数与反比例函数的图象交于点A(﹣4,﹣2)和B(a,4).

(1)求反比例函数的解析式和点B的坐标;

(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数的值?

22.(2012•宁波)某学校要成立一支由6名女生组成的礼仪队,初三两个班各选6名女生,分别组成甲队和乙队参加选拔.每位女生的身高统计如图,部分统计量如表:

平均数标准差中位数
甲队1.720.038
乙队0.0251.70
(1)求甲队身高的中位数;(2)求乙队身高的平均数及身高不小于1.70米的频率;

(3)如果选拔的标准是身高越整齐越好,那么甲、乙两队中哪一队将被录取?请说明理由.

23.(2012•宁波)如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.

(1)求证:AC是⊙O的切线;

(2)已知sinA=,⊙O的半径为4,求图中阴影部分的面积.

24.(2012•宁波)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表的部分信息:

自来水销售价格污水处理价格
每户每月用水量单价:元/吨

单价:元/吨

17吨以下

a0.80
超过17吨但不超过30吨的部分

b0.80
超过30吨的部分

6.000.80
(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)

已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.

(1)求a、b的值;

(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?

25.(2012•宁波)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1,▱ABCD中,若AB=1,BC=2,则▱ABCD为1阶准菱形.

(1)判断与推理:

①邻边长分别为2和3的平行四边形是 _________ 阶准菱形;

②小明为了剪去一个菱形,进行了如下操作:如图2,把▱ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE.请证明四边形ABFE是菱形.

(2)操作、探究与计算:

①已知▱ABCD的邻边长分别为1,a(a>1),且是3阶准菱形,请画出▱ABCD及裁剪线的示意图,并在图形下方写出a的值;

②已知▱ABCD的邻边长分别为a,b(a>b),满足a=6b+r,b=5r,请写出▱ABCD是几阶准菱形.

26.(2012•宁波)如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.

(1)求二次函数的解析式;

(2)点P在x轴正半轴上,且PA=PC,求OP的长;

(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.

①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;

②若⊙M的半径为,求点M的坐标.

2012年浙江省嘉兴市中考数学试卷

一、选择题(本题有10小题,每题4分,共40分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)

1.(2012•嘉兴)(﹣2)0等于(  )

 A.

1B.

2C.

0D.

﹣2

2.(2012•嘉兴)下列图案中,属于轴对称图形的是(  )

 A.

B.

C.

D.

3.(2012•嘉兴)南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为(  )

 A.

0.35×108

B.

3.5×107

C.

3.5×106

D.

35×105

4.(2012•嘉兴)如图,AB是⊙0的弦,BC与⊙0相切于点B,连接OA、OB.

若∠ABC=70°,则∠A等于(  )

 A.

15°

B.

20°

C.

30°

D.

70°

5.(2012•嘉兴)若分式的值为0,则(  )

 A.

x=﹣2

B.

x=0C.

x=1或2

D.

x=1
6.(2012•嘉兴)如图,A、B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠A=90°,∠C=40°,则AB等于(  )米.

 A.

asin40°

B.

acos40°

C.

atan40°

D.

7.(2012•嘉兴)已知一个圆锥的底面半径为3cm,母线长为10cm,则这个圆锥的侧面积为(  )

 A.

15πcm2

B.

30πcm2

C.

60πcm2

D.

3cm2

8.(2012•嘉兴)已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于(  )

 A.

40°

B.

60°

C.

80°

D.

90°

9.(2012•嘉兴)定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V数”如“947”就是一个“V数”.若十位上的数字为2,则从1,3,4,5中任选两数,能与2组成“V数”的概率是(  )

 A.

B.

C.

D.

10.(2012•嘉兴)如图,正方形ABCD的边长为a,动点P从点A出发,沿折线A→B→D→C→A的路径运 动,回到点A时运动停止.设点P运动的路程长为长为x,AP长为y,则y关于x的函数图象大致是(  )

 A.

B.

C.

D.

二、填空题(本题有6小题,每题5分,共30分)

11.(2012•嘉兴)当a=2时,代数式3a﹣1的值是 _________ .

12.(2011•怀化)因式分解:a2﹣9= _________ .

13.(2012•嘉兴)在直角△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若CD=4,则点D到斜边AB的距离为 _________ .

14.(2012•嘉兴)如图是嘉兴市某6天内的最高气温折线统计图,则最高气温的众数是 _________ ℃.

15.(2012•嘉兴)如图,在⊙O中,直径AB丄弦CD于点M,AM=18,BM=8,则CD的长为 _________ .

16.(2012•嘉兴)如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交GD、CA于点E、F,与过点A且垂直于的直线相交于点G,连接DF.给出以下四个结论:

①;②点F是GE的中点;③AF=AB;④S△ABC=5S△BDF,其中正确的结论序号是 _________ .

三、解答题(本题有8小题,第17〜20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)

17.(2012•嘉兴)计算:

(1)丨﹣5|+﹣32

(2)(x+1)2﹣x(x+2)

18.(2012•嘉兴)解不等式2(x﹣1)﹣3<1,并把它的解集在数轴上表示出来.

19.(2012•嘉兴)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.

(1)求证:BD=EC;

(2)若∠E=50°,求∠BAO的大小.

20.(2012•嘉兴)小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).

请你根据图中提供的信息,解答下列问题:

(1)计算被抽取的天数;

(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;

(3)请估计该市这一年(365天)达到优和良的总天数.

21.(2012•嘉兴)如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A(2,3)和点B,与x轴相交于点C(8,0).

(1)求这两个函数的解析式;

(2)当x取何值时,y1>y2.

22.(2012•嘉兴)某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每 辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出工辆车时,日收益为y元.(日收益=日租金收入一平均每日各项支出)

(1)公司每日租出x辆车时,每辆车的日租金为 _________ 元(用含x的代数式表示);

(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?

(3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?

23.(2012•嘉兴)将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].

(1)如图①,对△ABC作变换[60°,]得△AB′C′,则S△AB′C′:S△ABC= _________ ;直线BC与直线B′C′所夹的锐角为 _________ 度;

(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB'C',使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;

(4)如图③,△ABC中,AB=AC,∠BAC=36°,BC=l,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB'C'为平行四边形,求θ和n的值.

24.(2012•嘉兴)在平面直角坐标系xOy中,点P是抛物线:y=x2上的动点(点在第一象限内).连接 OP,过点0作OP的垂线交抛物线于另一点Q.连接PQ,交y轴于点M.作PA丄x轴于点A,QB丄x轴于点B.设点P的横坐标为m.

(1)如图1,当m=时,

①求线段OP的长和tan∠POM的值;

②在y轴上找一点C,使△OCQ是以OQ为腰的等腰三角形,求点C的坐标;

(2)如图2,连接AM、BM,分别与OP、OQ相交于点D、E.

①用含m的代数式表示点Q的坐标;

②求证:四边形ODME是矩形.

2012年浙江省金华市义乌市中考数学试卷

一、选择题(请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)

1.(2012•义乌市)﹣2的相反数是(  )

 A.

2B.

﹣2

C.

D.

2.(2012•义乌市)下列四个立体图形中,主视图为圆的是(  )

 A.

B.

C.

D.

3.(2012•义乌市)下列计算正确的是(  )

 A.

a3•a2=a6

B.

a2+a4=2a2

C.

(a3)2=a6

D.

(3a)2=a6

4.(2012•义乌市)一个正方形的面积是15,估计它的边长大小在(  )

 A.

2与3之间

B.

3与4之间

C.

4与5之间

D.

5与6之间

5.(2012•义乌市)在x=﹣4,﹣1,0,3中,满足不等式组的x值是(  )

 A.

﹣4和0

B.

﹣4和﹣1

C.

0和3

D.

﹣1和0

6.(2012•义乌市)如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是(  )

 A.

2B.

3C.

4D.

8
7.(2012•义乌市)如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为(  )

 A.

6B.

8C.

10D.

12
8.(2012•义乌市)下列计算错误的是(  )

 A.

B.

 C.

D.

9.(2012•义乌市)义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是(  )

 A.

B.

C.

D.

10.(2012•义乌市)如图,已知抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:

①当x>0时,y1>y2;  ②当x<0时,x值越大,M值越小;

③使得M大于2的x值不存在; ④使得M=1的x值是或.

其中正确的是(  )

 A.

①②B.

①④C.

②③D.

③④
二、填空题(本题有6小题,每小题4分,共24分)

11.(2012•义乌市)分解因式:x2﹣9= _________ .

12.(2012•义乌市)如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为 _________ .

13.(2012•义乌市)在义乌市中小学生“人人会乐器”演奏比赛中,某班10名学生成绩统计如图所示,则这10名学生成绩的中位数是 _________ 分,众数是 _________ 分.

14.(2012•义乌市)正n边形的一个外角的度数为60°,则n的值为 _________ .

15.(2012•义乌市)近年来,义乌市民用汽车拥有量持续增长,2007年至2011年我市民用汽车拥有量依次约为:11,13,15,19,x(单位:万辆),这五个数的平均数为16,则x的值为 _________ .

16.(2012•义乌市)如图,已知点A(0,2)、B(,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在其左侧作等边△APQ,连接PB、BA.若四边形ABPQ为梯形,则:

(1)当AB为梯形的底时,点P的横坐标是 _________ ;

(2)当AB为梯形的腰时,点P的横坐标是 _________ .

三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)

17.(2012•义乌市)计算:|﹣2|+(﹣1)2012﹣(π﹣4)0.

18.(2012•义乌市)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是 _________ .(不添加辅助线).

19.(2012•义乌市)学习成为商城人的时尚,义乌市新图书馆的启用,吸引了大批读者.有关部门统计了2011年10月至2012年3月期间到市图书馆的读者的职业分布情况,统计图如下:

(1)在统计的这段时间内,共有 _________ 万人到市图书馆阅读,其中商人所占百分比是 _________ ,并将条形统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑);

(2)若今年4月到市图书馆的读者共28000名,估计其中约有多少名职工?

20.(2012•义乌市)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.

(1)求∠ABC的度数;

(2)求证:AE是⊙O的切线;

(3)当BC=4时,求劣弧AC的长.

21.(2012•义乌市)如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.

(1)求边AB的长;

(2)求反比例函数的解析式和n的值;

(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.

22.(2012•义乌市)周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.

(1)求小明骑车的速度和在甲地游玩的时间;

(2)小明从家出发多少小时后被妈妈追上?此时离家多远?

(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.

23.(2012•义乌市)在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.

(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;

(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;

(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.

24.(2012•义乌市)如图1,已知直线y=kx与抛物线y=交于点A(3,6).

(1)求直线y=kx的解析式和线段OA的长度;

(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;

(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?

2012年浙江省衢州市中考数学试卷

一、选择题:(本大题共10小题,每小题3分,共30分,请选出一个符号题意的正确的选项填涂在答题纸上,不选、多选、错选均不给分)

1.(2012•衢州)下列四个数中,最小的数是(  )

 A.

2B.

﹣2

C.

0D.

2.(2012•衢州)衢州市是国家优秀旅游城市,吸引了众多的海内外游客.据衢州市2011年国民经济和社会发展统计报显示,全年旅游总收入达121.04亿元.将121.04亿元用科学记数法可表示为(  )

 A.

12.104×109元

B.

12.104×1010元

C.

1.2104×1010元

D.

1.2104×1011元

3.(2012•衢州)下列计算正确的是(  )

 A.

2a2+a2=3a4

B.

a6÷a2=a3

C.

a6•a2=a12

D.

(﹣a6)2=a12

4.(2012•衢州)函数的自变量x的取值范围在数轴上可表示为(  )

 A.

B.

C.

D.

5.(2012•衢州)某中学篮球队13名队员的年龄情况如下:

年龄(单位:岁)15161718
人数3451
 A.

15.5B.

16C.

16.5D.

17
6.(2012•衢州)如图,点A、B、C在⊙O上,∠ACB=30°,则sin∠AOB的值是(  )

 A.

B.

C.

D.

7.(2012•衢州)下列调查方式,你认为最合适的是(  )

 A.

日光灯管厂要检测一批灯管的使用寿命,采用普查方式
 B.

了解衢州市每天的流动人口数,采用抽查方式
 C.

了解衢州市居民日平均用水量,采用普查方式
 D.

旅客上飞机前的安检,采用抽样调查方式
8.(2012•衢州)长方体的主视图、俯视图如图所示,则其左视图面积为(  )

 A.

3B.

4C.

12D.

16
9.(2012•衢州)用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是(  )

 A.

cm

B.

3cm

C.

4cm

D.

4cm
10.(2012•衢州)已知二次函数y=﹣x2﹣7x+,若自变量x分别取x1,x2,x3,且0<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系正确的是(  )

 A.

y1>y2>y3

B.

y1<y2<y3

C.

y2>y3>y1

D.

y2<y3<y1

二、填空题:本大题共6小题,每小题4分,共24分,把答案填在答题纸上.

11.(2012•衢州)不等式2x﹣1>x的解是 _________ .

12.(2012•衢州)试写出图象位于第二、四象限的一个反比例函数的解析式 _________ .

13.(2012•衢州)如图,“石头、剪刀、布”是民间广为流传的游戏,游戏时,双方每次任意出“石头”、“剪刀”、“布”这三种手势中的一种,那么双方出现相同手势的概率P= _________ .

14.(2012•衢州)工程上常用来测量零件上小圆孔的宽口,假设的直径是10mm,测得顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为 _________ mm.

    

15.(2012•衢州)如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD交于点F,CD=2DE.若△DEF的面积为a,则平行四边形ABCD的面积为 _________ (用a的代数式表示).

16.(2012•衢州)如图,已知函数y=2x和函数的图象交于A、B两点,过点A作AE⊥x轴于点E,若△AOE的面积为4,P是坐标平面上的点,且以点B、O、E、P为顶点的四边形是平行四边形,则满足条件的P点坐标是 _________ .

三、解答题:(本大题8小题,共66分.请将答案写在答题纸上,务必写出解答过程).

17.(2012•衢州)计算:|﹣2|+2﹣1﹣cos60°﹣(1﹣)0.

18.(2012•衢州)先化简,再选取一个你喜欢的数代入求值.

19.(2012•衢州)如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BE=DF,连接AE、CF.请你猜想:AE与CF有怎样的数量关系?并对你的猜想加以证明.

20.(2012•衢州)据衢州市2011年国民经济和社会发展统计公报显示,2011年衢州市新开工的住房有商品房、廉租房、经济适用房和公共租赁房四种类型.老王对这四种新开工的住房套数和比例进行了统计,并将统计结果绘制成下面两幅统计图,请你结合图中所给信息解答下列问题:

(1)求经济适用房的套数,并补全频数分布直方图;

(2)假如申请购买经济适用房的对象有950人符号购买条件,老王是其中之一.由于购买人数超过房子套数,购买者必须通过电脑摇号产生.如果对2011年新开工的经济适用房进行电脑摇号,那么老王被摇中的概率是多少?

(3)如果2012年新开工廉租房建设的套数比2011年增长10%,那么2012年新开工廉租房有多少套?

21.(2012•衢州)如图,在Rt△ABC中,∠C=90°,∠ABC的平分线交AC于点D,点O是AB上一点,⊙O过B、D两点,且分别交AB、BC于点E、F.

(1)求证:AC是⊙O的切线;

(2)已知AB=10,BC=6,求⊙O的半径r.

22.(2012•衢州)在社会主义新农村建设中,衢州某乡镇决定对A、B两村之间的公路进行改造,并有甲工程队从A村向B村方向修筑,乙工程队从B村向A村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务有甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数图象,请根据图象所提供的信息解答下列问题:

(1)乙工程队每天修公路多少米?

(2)分别求甲、乙工程队修公路的长度y(米)与施工时间x(天)之间的函数关系式.

(3)若该项工程由甲、乙两工程队一直合作施工,需几天完成?

23.(2012•衢州)课本中,把长与宽之比为的矩形纸片称为标准纸.请思考解决下列问题:

(1)将一张标准纸ABCD(AB<BC)对开,如图1所示,所得的矩形纸片ABEF是标准纸.请给予证明.

(2)在一次综合实践课上,小明尝试着将矩形纸片ABCD(AB<BC)进行如下操作:

第一步:沿过A点的直线折叠,使B点落在AD边上点F处,折痕为AE(如图2甲);

第二步:沿过D点的直线折叠,使C点落在AD边上点N处,折痕为DG(如图2乙),此时E点恰好落在AE边上的点M处;

第三步:沿直线DM折叠(如图2丙),此时点G恰好与N点重合.

请你探究:矩形纸片ABCD是否是一张标准纸?请说明理由.

(3)不难发现:将一张标准纸按如图3一次又一次对开后,所得的矩形纸片都是标准纸.现有一张标准纸ABCD,AB=1,BC=,问第5次对开后所得标准纸的周长是多少?探索直接写出第2012次对开后所得标准纸的周长.

24.(2012•衢州)如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.

(1)求该抛物线的函数解析式;

(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由.

(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移过程中与△COD重叠部分面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

2012年浙江省温州市中考数学试卷

一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选、均不给分)

1.(2012•温州)给出四个数,,其中为无理数的是(  )

 A.

﹣1

B.

0C.

0.5D.

2.(2012•温州)数据35,38,37,36,37,36,37,35的众数是(  )

 A.

35B.

36C.

37D.

38
3.(2012•温州)我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是(  )

 A.

B.

C.

D.

4.(2012•温州)一次函数y=﹣2x+4的图象与y轴的交点坐标是(  )

 A.

(0,4)

B.

(4,0)

C.

(2,0)

D.

(0,2)

5.(2012•温州)把a2﹣4a多项式分解因式,结果正确的是(  )

 A.

a(a﹣4)

B.

(a+2)(a﹣2)

C.

a(a+2)(a﹣2)

D.

(a﹣2)2﹣4

6.(2012•温州)小林家今年1﹣5月份的用电量情况如图所示,四图可知,相邻两个月中,用电量变化最大的是(  )

 A.

1月至2月

B.

2月至3月

C.

3月至4月

D.

4月至5月

7.(2012•温州)已知⊙O1与⊙O2外切,O1O2=8cm,⊙O1的半径为5cm,则⊙O2的半径是(  )

 A.

13cmB.

8cmC.

6cmD.

3cm
8.(2012•温州)下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是(  )

 A.

a=﹣2

B.

a=﹣1

C.

a=1D.

a=2
9.(2012•温州)楠溪江某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是(  )

 A.

B.

 C.

D.

10.(2012•温州)如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点,连接MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是(  )

 A.

一直增大B.

一直减小C.

先减小后增大D.

先增大后减少
二、填空题(本题有6小题,每小题5分,共30分)

11.(2012•温州)化简:2(a+1)﹣a= _________ .

12.(2012•温州)分别以正方形的各边为直径向其内部作半圆得到的图形如图所示.将该图形绕其中心旋转一个合适的角度后会与原图形重合,则这个旋转角的最小度数是 _________ 度.

13.(2012•温州)若代数式的值为零,则x= _________ .

14.(2012•温州)赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成如图所示的统计图.由图可知,成绩不低于90分的共有 _________ 人.

15.(2012•温州)某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数会比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m人,则该班同学共有 _________ 人(用含有m的代数式表示)

16.(2012•温州)如图,已知动点A在函数的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC.直线DE分别交x轴于点P,Q.当QE:DP=4:9时,图中阴影部分的面积等于 _________ .

三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)

17.(2012•温州)(1)计算:;

(2)解方程:x2﹣2x=5.

18.(2012•温州)如图,在方格纸中的三个顶点及A、B、C、D、E五个点都在小方格的顶点上.现以A、B、C、D、E中的三个点为顶点画三角形.

(1)在图甲中画出一个三角形与△PQR全等;

(2)在图乙中画出一个三角形与△PQR面积相等但不全等

19.(2012•温州)如图,△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.

20.(2012•温州)一个不透明的袋中装有红、黄、白三种颜色球共100个,它们除颜色外都相同,其中黄球个数是白球个数的2倍少5个.已知从袋中摸出一个球是红球的概率是.

(1)求袋中红球的个数;

(2)求从袋中摸出一个球是白球的概率;

(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.

21.(2012•温州)某海滨浴场东西走向的海岸线可近似看作直线l(如图).救生员甲在A处的瞭望台上观察海面情况,发现其正北方向的B处有人发出求救信号.他立即沿AB方向径直前往救援,同时通知正在海岸线上巡逻的救生员乙.乙马上从C处入海,径直向B处游去.甲在乙入海10秒后赶到海岸线上的D处,再向B处游去.若CD=40米,B在C的北偏东35°方向,甲、乙的游泳速度都是2米/秒.问谁先到达B处?请说明理由.(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)

22.(2012•温州)如图,△ABC中,∠ACB=90°,D是边AB上一点,且∠A=2∠DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.

(1)求证:AB是⊙O的切线;

(2)若CD的弦心距为1,BE=EO,求BD的长.

23.(2012•温州)温州享有“中国笔都”之称,其产品畅销全球,某制笔企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示.设安排x件产品运往A地.

(1)当n=200时,①根据信息填表:

A地

B地

C地

合计
产品件数(件)x2x200
运费(元)30x
(2)若总运费为5800元,求n的最小值.

24.(2012•温州)如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连接CB,CP.

(1)当m=3时,求点A的坐标及BC的长;

(2)当m>1时,连接CA,问m为何值时CA⊥CP?

(3)过点P作PE⊥PC且PE=PC,问是否存在m,使得点E落在坐标轴上?若存在,求出所有满足要求的m的值,并定出相对应的点E坐标;若不存在,请说明理由.

2012年浙江省丽水市中考数学试卷

一、选择题(共10小题,每小题3分,满分30分)

1.(2012•丽水)如果零上2℃记作+2℃,那么零下3℃记作(  )

 A.

﹣3℃

B.

﹣2℃

C.

+3℃

D.

+2℃

2.(2012•丽水)计算3a•(2b)的结果是(  )

 A.

3abB.

6aC.

6abD.

5ab
3.(2012•丽水)如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是(  )

 A.

﹣4

B.

﹣2

C.

0D.

4
4.(2012•丽水)把分式方程转化为一元一次方程时,方程两边需同乘以(  )

 A.

xB.

2xC.

x+4D.

x(x+4)

5.(2012•丽水)在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是(  )

 A.

B.

C.

D.

6.(2012•丽水)分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是(  )

 A.

B.

C.

D.

7.(2012•丽水)如图,小明在操场上从A点出发,先沿南偏东30°方向走到B点,再沿南偏东60°方向走到C点.这时,∠ABC的度数是(  )

 A.

120°

B.

135°

C.

150°

D.

160°

8.(2012•丽水)为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有(  )

                                       

 A.

12B.

48C.

72D.

96
9.(2012•丽水)如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是(  )

 A.

B.

C.

D.

10.(2012•丽水)小明用棋子摆放图形来研究数的规律.图1中棋子围城三角形,其棵数3,6,9,12,…称为三角形数.类似地,图2中的4,8,12,16,…称为正方形数.下列数中既是三角形数又是正方形数的是(  )

 A.

2010B.

2012C.

2014D.

2016
二、填空题(共6小题,每小题4分,满分24分)

11.(2012•丽水)写出一个比﹣3大的无理数是 _________ .

12.(2012•丽水)分解因式:2x2﹣8= _________ .

13.(2006•梧州)半径分别为3cm和4cm的两圆内切,这两圆的圆心距为 _________ cm.

14.(2012•丽水)甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶 _________ 千米.

            

15.(2012•丽水)如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是 _________ .

16.(2012•丽水)如图,在直角梯形ABCD中,∠A=90°,∠B=120°,AD=,AB=6.在底边AB上取点E,在射线DC上取点F,使得∠DEF=120°.

(1)当点E是AB的中点时,线段DF的长度是 _________ ;

(2)若射线EF经过点C,则AE的长是 _________ .

三、解答题(共8小题,满分66分)

17.(2012•丽水)计算:2sin60°+|﹣3|﹣﹣.

18.(2012•丽水)已知A=2x+y,B=2x﹣y,计算A2﹣B2.

19.(2012•丽水)学校校园内有一小山坡AB,经测量,坡角∠ABC=30°,斜坡AB长为12米.为方便学生行走,决定开挖小山坡,使斜坡BD的坡比是1:3(即为CD与BC的长度之比).A,D两点处于同一铅垂线上,求开挖后小山坡下降的高度AD.

20.(2012•丽水)如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF于点H,交⊙O于点C,连接BD.

(1)求证:BD平分∠ABH;

(2)如果AB=12,BC=8,求圆心O到BC的距离.

21.(2012•丽水)如图,等边△OAB和等边△AFE的一边都在x轴上,双曲线y=(k>0)经过边OB的中点C和AE的中点D.已知等边△OAB的边长为4.

(1)求该双曲线所表示的函数解析式;

(2)求等边△AEF的边长.

22.(2012•丽水)小明参加班长竞选,需进行演讲答辩与民主测评,民主测评时一人一票,按“优秀、良好、一般”三选一投票.如图是7位评委对小明“演讲答辩”的评分统计图及全班50位同学民主测评票数统计图.

(1)求评委给小明演讲答辩分数的众数,以及民主测评为“良好”票数的扇形圆心角度数;

(2)求小明的综合得分是多少?

(3)在竞选中,小亮的民主测评得分为82分,如果他的综合得分不小于小明的综合得分,他的演讲答辩得分至少要多少分?

23.(2012•丽水)在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O作OB⊥OA,交抛物线于点B,以OA、OB为边构造矩形AOBC.

(1)如图1,当点A的横坐标为 _________ 时,矩形AOBC是正方形;

(2)如图2,当点A的横坐标为时,

①求点B的坐标;

②将抛物线y=x2作关于x轴的轴对称变换得到抛物线y=﹣x2,试判断抛物线y=﹣x2经过平移交换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由.

24.(2012•丽水)在△ABC中,∠ABC=45°,tan∠ACB=.如图,把△ABC的一边BC放置在x轴上,有OB=14,OC=,AC与y轴交于点E.

(1)求AC所在直线的函数解析式;

(2)过点O作OG⊥AC,垂足为G,求△OEG的面积;

(3)已知点F(10,0),在△ABC的边上取两点P,Q,是否存在以O,P,Q为顶点的三角形与△OFP全等,且这两个三角形在OP的异侧?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.下载本文

显示全文
专题