视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
复变函数与积分变换期末试题(附有答案)
2025-09-29 16:30:54 责编:小OO
文档
复变函数与积分变换期末试题

一.填空题(每小题3分,共计15分)

1.的幅角是();2.的主值是(    );3.,( 0   ),4.是的(    一级   )极点;5.,(-1 );

二.选择题(每题3分,共15分)

1.解析函数的导函数为(     );

(A); (B);

(C); (D).

2.C是正向圆周,如果函数(    ),则.

(A);  (B); (C); (D).

3.如果级数在点收敛,则级数在

(A)点条件收敛 ;  (B)点绝对收敛;

(C)点绝对收敛;  (D)点一定发散. 

4.下列结论正确的是(      )

(A)如果函数在点可导,则在点一定解析;

(B) 如果在C所围成的区域内解析,则

(C)如果,则函数在C所围成的区域内一定解析;

(D)函数在区域内解析的充分必要条件是、在该区域内均为调和函数.

5.下列结论不正确的是(         ).

(A) (B)   

(C) (D) 

三.按要求完成下列各题(每小题10分,共40分)

(1).设是解析函数,求

解:因为解析,由C-R条件    

   

, 

给出C-R条件6分,正确求导给2分,结果正确2分。

(2).计算其中C是正向圆周:

解:本题可以用柯西公式\柯西高阶导数公式计算也可用留数计算洛朗展开计算,仅给出用前者计算过程

因为函数在复平面内只有两个奇点,分别以为圆心画互不相交互不包含的小圆且位于c内

无论采用那种方法给出公式至少给一半分,其他酌情给分。

(3).

解:设在有限复平面内所有奇点均在:内,由留数定理

     -----(5分)

                    ----(8分)

      --------(10分)

(4)函数在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级.

解 :(1)

(2)

(3)

(4)

(5)

备注:给出全部奇点给5分 ,其他酌情给分。

四、(本题14分)将函数在以下区域内展开成罗朗级数;

(1),(2),(3)

解:(1)当

             -------6分

(2)当

=

                    -------10分

(3)当

          ------14分

每步可以酌情给分。

五.(本题10分)用Laplace变换求解常微分方程定解问题:

解:对的Laplace变换记做,依据Laplace变换性质有

              …(5分)

整理得

                    …(7分)

                         …(10分)

六、(6分)求的傅立叶变换,并由此证明:

解:   --------3分

  ------4分

-  -------5分

,    -------6分

  

«复变函数与积分变换»期末试题简答及评分标准(B)       一.           填空题(每小题3分,共计15分)

1.的幅角是(     );2.的主值是(     );3.,( 0  );4. ,(  0  )  ;5.,(   0      );

二.选择题(每小题3分,共计15分)

1.解析函数的导函数为(     );

(A); (B);

(C); (D).

2.C是正向圆周,如果函数(    ),则.

(A);  (B); (C); (D).

3.如果级数在点收敛,则级数在

(A)点条件收敛 ;  (B)点绝对收敛;

(C)点绝对收敛;   (D)点一定发散. 

4.下列结论正确的是(       )

(A)如果函数在点可导,则在点一定解析;

(B) 如果,其中C复平面内正向封闭曲线, 则在C所围成的区域内一定解析;

(C)函数在点解析的充分必要条件是它在该点的邻域内一定可以展开成为的幂级数,而且展开式是唯一的;

(D)函数在区域内解析的充分必要条件是、在该区域内均为调和函数.

5.下列结论不正确的是(          ).

(A)、是复平面上的多值函数;是无界函数;

是复平面上的有界函数;(D)、是周期函数.

三.按要求完成下列各题(每小题10分,共计40分)

(1)求使是解析函数, 

解:因为解析,由C-R条件    

   

, 

给出C-R条件6分,正确求导给2分,结果正确2分。

(2)..其中C是正向圆周;

解:本题可以用柯西公式\柯西高阶导数公式计算也可用留数计算洛朗展开计算,仅给出用前者计算过程

因为函数在复平面内只有两个奇点,分别以为圆心画互不相交互不包含的小圆且位于c内

(3).计算,其中C是正向圆周; 

解:设在有限复平面内所有奇点均在:内,由留数定理

     -----(5分)

                

(4)函数在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级.

     

  

给出全部奇点给5分。其他酌情给分。

四、(本题14分)将函数在以下区域内展开成罗朗级数;

(1),(2),(3)

(1),(2),(3)

解:(1)当

                     --------6分

(2)当

=          

                -----10分

(3)当

        --------14分

五.(本题10分)用Laplace变换求解常微分方程定解问题

解:对的Laplace变换记做,依据Laplace变换性质有

                …(5分)

整理得

                              …(7分)

                    …(10分)

六、(本题6分)求的傅立叶变换,并由此证明:

解: 

                   -------2分

-----  4分

-----------  5分

=     --------------6分下载本文

显示全文
专题