疫苗佐剂综述
近三十年来,人用疫苗佐剂发展迅速,已经研发出了能诱发更强,更持久的人用 疫苗佐剂。但是还存在一些不足之处,理想的疫苗佐剂应该更适于临床应用,毒副作用更小。本文总结了当前疫苗佐剂的发展状况,其中包括疫苗佐剂的监管建议,理想佐剂的标准,以及详细介绍了诸如矿物盐类佐剂,毒素类佐剂,微生物衍生物类佐剂,油乳剂,细胞因子佐剂,多糖类佐剂,以及核酸佐剂。同时本文还讨论了最近新发现的Toll样受体的生物学作用以及在免疫激活中发挥的作用。
关键词:疫苗;佐剂;Toll样受体;
1 引言
免疫接种的目的就是要获得对疾病持久的免疫保护反应。与弱毒疫苗不同,灭活疫苗或亚单位疫苗通需要疫苗佐剂的参与才能更好的发挥作用【1】。“佐剂”一次来自于拉丁语“Adjuvare”一词,为“帮助”或“辅助”之意【2】。 免疫佐剂的生物作用包括:(1)抗原物质混合佐剂注入机体后,改变了抗原的物理性状,可使抗原物质缓慢地释放,延长了抗原的作用时间;(2)佐剂吸附了抗原后,增加了抗原的表面积,使抗原易于被巨噬细胞吞噬;(3)佐剂能刺激吞噬细胞对抗原的处理;(4)佐剂可促进淋巴细胞之间的接触,增强辅助T细胞的作用;(5)可刺激致敏淋巴细胞的和浆细胞产生抗体。故免疫佐剂的作用可使无免疫原性物质变成有效的免疫原;(6)可提高机体初次和再次免疫应答的抗体滴变;(7)改变抗体的产生类型以及产生迟发型变态反应,并使其增强。人们正是因为观察到疫苗接种位点处形成的脓肿协助机体产生了针对特异性抗原更强的免疫反应,从而形成了疫苗佐剂的理念。更有甚,与接种抗原不相关的物质形成的脓肿坏死也能增强疫苗的特异性免疫反应【3,4】。
1926年,通过吸附于铝盐类化合物的白喉类毒素首次证明了铝盐类佐剂的免疫增强作用。至今,铝盐类佐剂(主要指氢氧化铝和磷酸铝)依然是唯一人用疫苗佐剂。其原因是什么呢?尽管大量事实证明,弗氏完全佐剂和脂多糖类佐剂具有更强的佐剂活性,但由于其能引发局部和全身性的毒副作用而不适于人用。这也正是铝盐类佐剂作为人用疫苗佐剂80余年的原因所在。在今后的80年中,铝盐是否依然是人用的唯一疫苗佐剂?答案是肯定的。自批准铝盐作为人用疫苗佐剂以后,管理部门对人用疫苗佐剂的要求提高了很多。而且,用于评价疫苗佐剂安全性的后期临床试验花费日益昂贵。一旦通过200至500人安全性和效用性实验后,在疫苗佐剂审批注册之前还需要进行5000至25000人数的临床试验。正因为如此,在接下来的10至20年之间,几乎没有哪种佐剂能通过疫苗佐剂审批。
2 理想的疫苗佐剂
免疫接种时需要考虑以下几点:抗原种类,接种动物种类,免疫途径,以及可能产生的免疫副作用【10,11】。理想的佐剂半衰期长,生物体内可以降解,生产成本低,能诱导产生合适的免疫反应(也就是根据感染病原的不同,产生相应的细胞免疫和体液免疫)【12】。不同的接种途径能明显影响到疫苗佐剂的免疫效果,诸如粘膜免疫和非肠道途径。因此,新型疫苗载体,抗原递呈系统和佐剂复合物不都必须考虑带疫苗接种的最适途径【13】。虽然皮内和皮下疫苗接种与肌肉接种更能刺激机体的免疫反应,但由于铝盐佐剂剧烈的局部副作用,使其只能进行肌肉注射途径接种。
疫苗佐剂与抗原的混合使用需要权衡不良反应和免疫效应之间的关系。局部反应主要包括疼痛,局部炎症,肿胀,溃疡,接种部位细胞坏死,以及无菌性脓肿的形成。全身反应主要有恶心,发热,佐剂性关节炎,葡萄膜炎,变态反应,器官特异性毒性,以及免疫毒性(如,细胞因子释放,免疫抑制,自身免疫疾病)【16,17】。但是,通常疫苗佐剂的免疫效应通常与毒性成正相关,其中弗氏完全佐剂就是很明显的例子。因此,减小疫苗佐剂的毒性依然是佐剂研发道路上的巨大障碍。
3 佐剂发展道路上的规章障碍
对人用疫苗佐剂的要求远比兽用疫苗佐剂苛刻。除了要进行临床前期佐剂本身的研究外,在进入临川一期试验前还需要进行抗原和佐剂混合后的毒物学评估。前期临床毒物学评估通常使用小动物,如老鼠,小白鼠,兔子。使用与人类相同的免疫接种途径,相同的接种剂量和接种次数,或者更高的剂量来评估佐剂是否存在潜在的毒性【19,20】。疫苗佐剂审批中最大的障碍在与需要很大数量的试验对象进行新型疫苗佐剂或疫苗效用以及安全性的评估。而且今年来所需要试验对象的数量剧烈的增加了,以免因为试验对象数量的不足致使不能对临床药物进行客观公正的评估。
4 疫苗佐剂分类
4.1 矿物盐类佐剂
铝盐类(主要指氢氧化铝和磷酸铝)至今一直是人类使用最广泛的疫苗佐剂【16】。然后,铝盐类佐剂在某些情况下不能诱导很强的免疫反应,特别是不能诱导细胞免疫反应【23-25】。虽然有文献指出铝盐类佐剂的作用机理是在接种位点形成抗原贮存库而发挥佐剂作用,但是其具体的作用机制当前还不明确【26】。其作用机制也可能包括补体激活,嗜酸性粒细胞或吞噬细胞的激活【27】。铝盐类佐剂皮下或皮内接种时通常形成肉芽肿,而肌肉注射接种途径则不形成【28-30】。铝盐佐剂也能增加IgE的产生,变态反应,以及潜在的神经毒性。
4.2 皂苷类佐剂
Quil A 是来源于巴拿马皂树皮的提取液中,通过反向色谱层析技术分离的QS-21能诱导机体针对HIV-1以及其他病原抗原产生强烈的细胞免疫反应【16,37,38】。Quil A是由23中不同的皂角苷组成的天然产物,由于其强烈的毒性作用而不适于人类使用。不仅能引起剧烈的局部反应和肉芽肿,还能引起红细胞溶解反应【14,39-42】。与Quil A 相比QS-21毒性相对较小,但是依然不适合人类使用,除非是能接受其毒性的癌症疫苗或者相对小剂量的使用才可以。
4.3 微生物衍生物类佐剂
由于细菌和真菌中的一些成分能很好的刺激机体发生免疫反应,所以其能成为潜在的疫苗佐剂。细菌细胞壁的肽聚糖和LPS能很好的增强免疫反应,但不能对其本身产生免疫反应。此类佐剂是通过激活的Toll样受体介导的,机体接受到危险信号时Toll样受体激活全身的防御反应。完整的灭活菌体由于其巨大的毒性作用而不适于作为人用疫苗佐剂,但是研究发现,发挥作用的成分主要是胞壁酰二肽(MDP)【44】。盐溶液中MDP主要增强体液免疫反应【14,45,46】。但当与脂质体或甘油共同使用时却能激发很强的细胞免疫反应【47】。
另一种细菌衍生物类佐剂主要是革兰氏阴性菌的LPS。LPS中具有佐剂活性的结构成分主要是脂质A。弱酸性条件下,脂质A能水解为单磷酰脂A(MPL),MPL能保持脂质体A的佐剂效应,同时降低其毒性反应【49】。另一种具有佐剂活性的细胞壁衍生物为海藻糖二霉菌酸酯(TDM),此种佐剂能同时激活细胞和体液免疫反应【50】。
4.4 油乳剂佐剂
此类佐剂包括水包油或油包水乳剂,如,弗氏不完全佐剂,Montanide系列,佐剂65。通过在接种位点形成抗原贮存库降低抗原的释放速度,以及刺激产生抗体的浆细胞发挥佐剂效应。通常情况下,由于一些佐剂的毒性使其不适于人预防用疫苗的使用,但在极端情况下却可以使用,例如发生癌症时机体对佐剂的毒性具有很大的耐受性。通常油乳剂的副作用主要包括在接种位点处形成炎症反应,肉芽肿以及溃疡。为了筛选出更稳定,毒性更小的油乳剂,已经对不同来源的多种天然油进行了评估。水包油和油包水疫苗佐剂是继弗氏不完全佐剂发展起来的油乳佐剂,更加稳定,毒副作用也更小,并易于进行质量监控【58,59】。Montanide系列疫苗佐剂已经进行了HIV,疟疾,以及乳腺癌疫苗的研究【60】。
4.5 微粒抗原递呈系统
与抗原的贮存效应协同,在免疫反应中微粒的性质决定抗原递呈系统是否 能被成功激活。如果抗原递呈系统被激活,则疫苗的化学成分决定产生何种免疫反应【61】。
研究透彻的微粒抗原递呈系统主要包括:脂质体,多聚微球体,纳米粒子,免疫刺激复合物,病毒样粒子。这些是很重要的抗原递呈系统。此类疫苗佐剂广泛地作为蛋白亚单位疫苗,DNA疫苗的载体。当前主要的研究热点在于阐述微粒的大小和化学性质与佐剂的相互生物作用和机制之间的关系。
4.6 细胞因子佐剂
一般来说,细胞因子划分为现代疫苗佐剂。例如,粒细胞巨噬细胞刺激因子通过激活和招募抗原递呈细胞来增强初始免疫反应【87】。然而,由于粒细胞巨噬细胞刺激因子需要多次使用,具有毒性,以及一种细胞因子的免疫反应,使其实际应用是受到很大的【11】。DNA疫苗中,当细胞因子与抗原共表达于同一载体时能发挥很强的佐剂效应【88】。另外,IL-12以及其他细胞因子可溶性蛋白直接作为粘膜免疫佐剂时也能发挥很大的作用。
4.7 多糖类佐剂
来源于菊科植物根部的碳水化合物菊粉形成微粒时,能诱导强烈的体液和细胞免疫反应。菊粉微粒(MPI)是强有力的替代补体途径的激活剂,因此能激活先天性免疫反应【91】。与Montanide和QS21相比,MPI在刺激细胞免疫的同时也不会引起毒性反应。MPI与其他佐剂联合使用时形成了预期的疫苗佐剂,能不同程度的激活Th1和Th2细胞活性。MPI能很容易的诱导Th1和Th2免疫反应,并且不会产生IgE,没有明显的局部和全身性的毒性反应【94】。菊粉在体内代谢产物为单糖果糖和葡萄糖,因此不会有铝盐类佐剂那样的副作用。
4.8 佐剂剂型
新型疫苗佐剂是两种或多种具有不同作用机制的佐剂混合物。此种策略的主要目的在于进一步增强或调节针对特定抗原的免疫反应。
已经开发出MPL和铝盐类佐剂的联合佐剂用于乙肝疫苗,用于具有肾病的乙肝患者。在这些高危群体中,此类佐剂疫苗免疫反应产生的更快,更强烈,更持久,并且局部免疫反应轻微【108】。AS04佐剂已经评估用于HPV疫苗的研制【109,110】。
4.10 TLRs和佐剂活性
前面已经提到,Toll样受体激活剂已经作为疫苗佐剂激发机体的免疫反应。
Toll样受体是哺乳动物免疫系统细胞表达的跨膜信号蛋白,与其结合的配体必须具有高度的特异性【115】。这些配体都是进化特征明显的病原相关分子模式。 Toll样受体由于其主要分布单核或巨噬细胞、树突状细胞,已经作为疫苗研究的基础策略。
TLRs受到过度刺激时也会产生诸如弗氏完全佐剂之类的毒副作用。因此,必须考虑佐剂的剂量,作用机制,而不单单是佐剂的免疫效果。
5. 未来五年发展趋势
尽管近几十年来免疫学方面的知识不断的加深,但是铝盐类佐剂依然是当前人用疫苗的主要佐剂。并且此种局面在以后几年内也不会有所改变,因为已经研制出的疫苗效果挺好,并且对于儿科预防用疫苗来说,安全性是首要考虑的一点。然而,HIV,丙肝,疟疾以及其他顽疾的新型重组亚单位抗原,合成抗原则需要引进新型的临床试验用疫苗佐剂。
对佐剂作用机制的研究有助于进一步阐述佐剂活性背后的分子相互作用,同时,生物信息学的发展也进一步增强了致力于新型佐剂研究的科学家的预测能力。
参考文献:
[1] Petrovsky N, Aguilar JC. Vaccine adjuvants: current state and future
trends. Immunol Cell Biol 2004;82(5):488–96.
[2] Vogel FR. Adjuvants in perspective. In: Brown F, Haaheim LR, editors.
Modulation of the immune response to vaccine antigens. Dev.
Biol. Stand. vol 92. Basel: Karger; 1998. p. 241–8.
[3] Ramon G. Sur l’augmentation anormale de l’antitoxine chez les
chevaux producteurs de serum antidiphterique. Bull Soc Centr Med
Vet 1925;101:227–34.
[4] Ramon G. Procedes pour accro¨ıtre la production des antitoxins. Ann
Inst Pasteur 1926;40:1–10.
[5] Glenny AT, Pope CG,Waddington H,Wallace V. The antigenic value
of toxoid precipitated by potassium-alum. J Path Bact 1926;29:38–45.
[6] Vogel FR, Powell MF. A summary compendium of vaccine adjuvants
and excipients. In: Powell MF, Newman MJ, editors. Vaccine design:
the subunit and adjuvant approach. New York: Plenum Publishing
Corp.; 1995. p. 234–50.
[7] Freund J, Casals J, Hosmer EP. Sensitization and antibody formation
after injection of tubercle bacili and parafin oil. Proc Soc Exp Biol
Med 1937;37:509–13.
[8] Stuart-Harris CH. Adjuvant influenza vaccines. Bull WHO 1969;41,
617–621.
[9] Johnson AG, Gaines S, Landy M. Studies on the O-antigen of
Salmonella typhosa. V. Enhancement of antibody response to
protein antigens by the purified lipopolysaccharide. J Exp Med
1956;103:225–46.
[10] Lindblad EB. Aluminium adjuvants. In: Stewart-Tull DES, editor.
The theory and practical application of adjuvants. JohnWiley & Sons
Ltd.; 1995. p. 21–35.
[11] Byars NE, Allison AC. Immunologic adjuvants: general properties,
advantages, and limitations. In: Zola H, editor. Laboratory Methods
in Immunology. 1990. p. 39–51.
[12] Edelman R. Vaccine adjuvants. Rev Infect Dis 1980;2:370–83.
[13] Neutra MR, Pringault E, Kraehenbuhl JP. Antigen sampling across
epithelial barriers and induction of mucosal immune responses. Annu
Rev Immunol 1996;14:275–300.
[14] Warren HS, Chedid LA. Future prospects for vaccine adjuvants. CRC
Crit Rev Immunol 1986;4:369–88.[15] Edelman R. An update on vaccine adjuvants in clinical trials. AIDS
Res Hum Retroviruses 1992;8:1409–11.
[16] AllisonAC, Byars NE. Immunological adjuvants: desirable properties
and side-effects. Mol Immunol 1991;28:279–84.
[17] Waters RV, Terrell TG, Jones GH. Uveitis induction in the rabbit by
muramyl dipeptides. Infect Immunol 1986;51:816–25.
[18] Goldenthal KL, Cavagnaro JA, Alving CR, Vogel FR, National Cooperative
Vaccine Development Working Group. Safety evaluation of
vaccine adjuvants. AIDS Res Hum Retroviruses 1993;9:S45–9.
[19] Stewart-Tull DES. Recommendations for the assessment of adjuvants.
In: Gregoriadis G, AllisonAC, Poste G, editors. Immunological
adjuvants and vaccines. New York: Plenun Press; 19. p. 213–26.
[20] Edelman R, Tacket C. Adjuvants. Int Rev Immunol 1990;7:51–66.
[21] Couch RB. Nasal vaccination, Escherichia coli enterotoxin, and Bell’s
palsy. N Engl J Med 2004;350:860–1.
[22] Murphy TV, Gargiullo PM, Massoudi MS, Nelson DB, Jumaan AO,
Okoro CA, et al. Intussusception among infants given an oral rotavirus
vaccine. N Engl J Med 2001;344:5–72.
[23] Schirmbeck R, Melber K, Mertens T, Reimann J. Antibody and cytotoxic
T-cell responses to soluble hepatitis B virus (HBV) S antigen in
mice: implications for the pathogenesis of HBV-induced hepatitis. J
Virol 1994;68:1418–25.
[24] Traquina P, Morandi M, Contorni M, Van Nest G. MF59 adjuvant
enhances the antibody response to recombinant hepatitis B surface
antigen vaccine in primates. J Infect Dis 1996;174:1168–75.
[25] Brewer JM, Conacher M, Satoskar A, Bluethmann H, Alexander J.
In interleukin-4-deficient mice, alum not only generates T helper
1 responses equivalent to Freund’s complete adjuvant, but continues
to induce T helper 2 cytokine production. Eur J Immunol
1996;26:2062–6.
[26] Blagowechensky NN. Dur´ee du s´ejour de l’antig`ene dans l’organisme
et immunit´e. Rev Immunol Par´ıs 1938;4:161.
[27] Walls RS. Eosinophil response to alum adjuvants: involvement of T
cells in non-antigen-dependent mechanisms. Proc Soc Exp Biol Med
1977;156:431–5.
[28] Gupta RK, Rost BE, Relyveld E, Siber GR. Adjuvant properties of
aluminium and calcium compounds. In: Powell MF, Newman MJ,
editors.Vaccine design: the subunit and adjuvant approach. NewYork:
Plenum Press; 1995. p. 229–48.
[29] Butler NR, Voyce MA, Burland WL, Hilton ML. Advantages of aluminum
hydroxide adsorbed diphtheria, tetanus and pertussis vaccines
for the immunization of infants. Br Med J 1969;1:663–6.
[30] Straw BE, MacLachlan NJ, Corbett WT, Carter PB, Schey HM.
Comparison of tissue reactions produced by Haemophilus pleuropneumoniae
vaccines made with six different adjuvants in swine. Can
J Comp Med 1985;49:149.
[31] Audibert FM, Lise LD. Adjuvants: current status, clinical perspectives
and future prospects. Immunol Today 1993;14:281–4.
[32] Bomford R. Aluminium salts: perspectives in their use as adjuvants.
In: Gregoriadis G, Allison AC, Poste G, editors. Immunological adjuvants
and vaccines. New York: Plenum Press; 19. p. 35–41.
[33] Goto N, Kato H, Maeyama J-I, Eto K, Yoshihara S. Studies on the
toxicities of aluminium hydroxide and calcium phosphate as immunological
adjuvants for vaccines. Vaccine 1993;11:914–8.
[34] Relyveld EH, Hencoq E, Raynaud M. Etude de la vaccination
antidiphterique de sujets alergiques avec une anatoxine pure adsorbee
sur phosphate de calcium. Bull WHO 19;30:321–5.
[35] Gupta RK, Siber GR. Adjuvants for human vaccines-current status,
problems and future prospects. Vaccine 1995;13:1263–76.
[36] Relyveld EH. Preparation and use of calcium phosphate adsorbed
vaccines. Dev Biol Stand 1986;65:131–6.
[37] Kensil CR. Saponins as vaccine adjuvants. Crit Rev Ther Drug Carrier
Syst 1996;13:1–55.
[38] Takahashi H, Takeshita T, Morein B, Putney S, Germain RN, Berzofsky
JA. Induction of CD8+ cytotoxic T cells by immunization
with purified HIV-1 envelope protein in ISCOMs. Nature 1990;344:
873–5.
[39] Dalsgaard K. Adjuvants. Vet Immunol Immunopathol 1987;17:
145–53.
[40] Bomford RHR. The differential adjuvant activity of Al(OH)3 and
saponin. In: Madje J, editor. Immunopharmacology of infectious diseases:
vaccine adjuvants and modulators of non-specific resistance.
New York: Alan R. Liss; 1987. p. 65–70.
[41] R¨onnberg B, Fekadu M, Morein B. Adjuvant activity of non toxic
Quillaja saponaria Molina components for use in iscom-matrix. Vaccine
1995;13:1375–82.
[42] Kensil CR, Patel U, Lennick M, Marciani D. Separation and characterization
of saponins with adjuvant activity from Quillaja saponaria
Molina cortex. J Immunol 1991;146:431–7.
[43] Kensil CR, Wu J-Y, Soltysik S. Structural and immunological characterization
of the vaccine adjuvant QS-21. In: Powell MF, Newman
MJ, editors. Vaccine design: the subunit and adjuvant approach. New
York: Plenum Press; 1995. p. 525–41.
[44] Kotani S, Watanabe Y, Shimoto T, Narita T, Kato K, Stewart-Tull
DES, et al. Immunoadjuvant activities of cells walls, their water
soluble fractions and peptidoglycan subunits, prepared from various
gram-positive bacteria, and of synthetic N-acetylmuramyl peptides.
Z Immunitatsforsch 1975;149S:302–5.
[45] Audibert F, Leclerc C, Chedid L. Muramyl peptides as immunopharmacological
response modifiers. In: Torrence PF, editor. Biological
response moodifiers. Newapproaches to disease prevention. Orlando:
Academic Press; 1985. p. 307.
[46] Audibert F, Chedid L, Lefrancier P, Choay J. Distinctive adjuvanticity
of synthetic analogs of mycobacterialwater-soluble components. Cell
Immunol 1976;21:243–5.
[47] Parant MA, Audibert FM, Chedid LA, Level MR, Lefrancier PL,
Choay JP, et al. Immunostimulant activities of a lipophilic muramyl
dipeptide derivative and of a desmuramyl peptidolipid analogue.
Infect Immun 1980;27:826–30.
[48] Leclerc C, Vogel F. Synthetic immunomodulators and synthetic vaccines.
CRC Crit Rev Ther Drug Carrier Syst 1986;2:353–7.
[49] Tomai MA, JohnsonAG. T cell and interferon-gamma involvement in
the adjuvant action of a detoxified endotoxin. J Biol Resp Modifiers
19;8:625–30.
[50] Lemaire G, Tenu JP, Petit JF, Lederer E. Natural and synthetic
trehalose diesters as immunomodulators. Med Res Rev 1986;6:
243.
[51] Weiner GJ, Hsin-Ming L, Wooldridge JE, Dahle CE, Krieg AM.
Immunostimulatory oligodeoxynucletides containing the CpG motif
are effective as immune adjuvants in tumor antigen immunization.
Proc Natl Acad Sci USA 1997;94:10833–7.
[52] Hilleman MR, Woodhour AF, Friedman A, Phelps AH. Studies for
safety of adjuvant 65. Ann Allergy 1972;30:477–80.
[53] Smith JWG, Fletcher WB, Peters M, Westwood M, Perkins FT.
Response to influenza vaccine in adjuvant 65-4. J Hyg (Camb) 1975;
74:251–5.
[54] Weibel RE, McLean A, Woodhour AF, Friedman A, Hilleman MR.
Ten-year follow-up study for safety of Adjuvant 65 influenza vaccine
in man. Proc Soc Exp Biol Med 1973;143:1053–6.
[55] Freund J. The mode of action immunological adjuvants. Adv Tuberc
Res 1956;7:50–5.
[56] Woodard LF, Jasman RL. Stable oil-in-water emulsions: preparation
and use as vaccine vehicles for lipophilic adjuvants. Vaccine
1985;3:57–61.
[57] Kimura J, Nariuchi H, Watanabe T, Matuhasi T, Okayasu I,
Hatakeyama S. Studies on the adjuvant effect of water-in-oil-in-water
emulsion in sesame oil. I. Enhanced and persistent antibody formation
by antigen incorporated into the water-in-oil-in-water emulsion.
Jpn J Exp Med 1978;48:149–52.
[58] Freestone DS, Hamilton-Smith S, Schild GC, Buckland R, Chinn
S, Tyrrel DAJ. Antibody responses and resistance to challenge in
volunteers vaccinated with live attenuaded detergent split and oil adjuvant
A2/Hong Kong/68 (H3N2) influenza vaccines. J Hyg (Camb)
[59] Taylor PJ, Miller CL, Pollock TM, Perkins FT,Westwood MA. Antibody
response and reactions to aqueous influenza vaccine, simple
emulsion vaccine and multiple emulsion vaccine. J Hyg (Camb)
1969;67:485–90.
[60] Jones GL. Peptide vaccine derived from a malarial surface antigen:
effect of dose and adjuvant on immunogenicity. Immunol Lett
1990;24:253–60.
[61] Storni T, Kundig TM, Senti G, Johansen P. Immunity in response
to particulate antigen-delivery systems. Adv Drug Deliv Rev
2005;57:333–55.
[62] Bramwell VW, Perrie Y. Particulate delivery systems for vaccines.
Crit Rev Ther Drug Carrier Syst 2005;22:151–214.
[63] Shek PN, Yung BYK, Stanacev NZ. Comparison between multilamellar
and unilamellar liposomes in enhancing antibody formation.
Immunology 1983;49:37–40.
[] Allison AC, Gregoriadis G. Liposomes as immunological adjuvants.
Nature 1974;252:252–8.
[65] Heath TD, Edwards DC, Ryman BE. The adjuvant properties of liposomes.
Biochem Soc Trans 1976;4:49–52.
[66] Tyrrel DA, Heath TD, Colley CM, Ryman BE. New aspects of liposomes.
Biochim Biophys Acta 1976;457:259–63.
[67] van Rooijen N, van Nieuwmegen R. Use of liposomes as biodegradable
and harmless adjuvants. Methods Enzymol 1983;93:83–5.
[68] Taneichi M, Ishida H, Kajino K, Ogasawara K, Tanaka Y, Kasai M, et
al. Antigen chemically coupled to the surface of liposomes are crosspresented
to CD8+ T cells and induce potent antitumor immunity. J
Immunol 2006;177:2324–30.
[69] Laing P, Bacon A, McCormack B, Gregoriadis G, Frisch B, Schuber
F. The ’co-delivery’ approach to liposomal vaccines: application to
the development of influenza-A and hepatitis-B vaccine candidates. J
Liposome Res 2006;16:229–35.
[70] Eldrige JH, Staas JK, Meulbroek JA, Tice TR, Gilley RM. Biodegradable
microspheres as a vaccine delivery system. Mol Immunol
1991;28:287–90.
[71] Eldrige JH, Staas JK, Meulbroek JA, Tice TR, Gilley RM. Biodegradable
and biocompatible poly (dl-lactide-co-glycolide) microspheres
as an adjuvant for Staphylococcal enterotoxin B toxoid which
enhances the level of toxin-neutralizing antibodies. Infect Immun
1991;59:2978–83.
[72] Singh M, Kazzaz J, Ugozzoli M, Malyala P, Chesko J, O’Hagan
DT. Polylactide-co-glycolide microparticles with surface adsorbed
antigens as vaccine delivery systems. Curr Drug Deliv 2006;3:
115–20.
[73] Falo Jr LD, Kovacsovics-Bankowski M, Thompson K, Rock KL. Targeting
antigen into the phagocytic pathway in vivo induces protective
tumour immunity. Nat Med 1995;1:9–53.
[74] Fifis T, Gamvrellis A, Crimeen-Irwin B, Pietersz GA, Li J, Mottram
PL, et al. Size-dependent immunogenicity: therapeutic and
protective properties of nano-vaccines against tumors. J Immunol
2004;173:3148–54.
[75] Scheerlinck JP, Gloster S, Gamvrellis A, Mottram PL, Plebanski M.
Systemic immune responses in sheep, induced by a novel nano-bead
adjuvant. Vaccine 2006;24:1124–31.
[76] Cox E, Verdonck F, Vanrompay D, Goddeeris B. Adjuvants modulating
mucosal immune responses or directing systemic responses
towards the mucosa. Vet Res 2006;37:511–39.
[77] Pearse MJ, Drane D. ISCOMATRIX adjuvant for antigen delivery.
Adv Drug Deliv Rev 2005;57:465–74.
[78] Wikman M, Friedman M, Pinitkiatisakul S, Andersson C, Lovgren-
Bengtsson K, Lunden A, et al. Achieving directed immunostimulating
complexes incorporation. Expert Rev Vaccines 2006;5:395–403.
[79] Skene CD, Sutton P. Saponin-adjuvanted particulate vaccines for clinical
use. Methods 2006;40:53–9.
[80] Antonis AF, Bruschke CJ, Rueda P, Maranga L, Casal JI, Vela
C, et al. A novel recombinant virus-like particle vaccine for prevention
of porcine parvovirus-induced reproductive failure. Vaccine
2006;24:5481–90.