视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
晶圆减薄工艺与基本原理
2025-09-29 16:39:22 责编:小OO
文档
晶圆减薄工艺与基本原理

展开全文 

1 减薄的目的

直径150mm(6寸)和200mm(8寸)的晶圆厚度分别为625um和725um,而直径为300mm硅片平均厚度达到775um。在晶圆中总厚度90%以上的衬底材料是为了保证晶圆在制造,测试和运送过程中有足够的强度。

晶圆减薄工艺的作用是对已完成功能的晶圆(主要是硅晶片)的背面基体材料进行磨削,去掉一定厚度的材料。有利于后续封装工艺的要求以及芯片的物理强度,散热性和尺寸要求

晶圆减薄后对芯片有以下优点

1)散热效率显著提高,随着芯片结构越来越复杂,集成度越来越高,晶体管数量急剧增加,散热已逐渐称为影响芯片性能和寿命的关键因素。薄的芯片更有利于热量从衬底导出。

2)减小芯片封装体积。微电子产品日益向轻薄短小的方向发展,厚度的减小也相应地减小了芯片体积。

3)减少芯片内部应力。芯片厚度越厚芯片工作过程中由于热量的产生,使得芯片背面产生内应力。芯片热量升高,基体层之间的热差异性加剧,加大了芯片内应力,较大的内应力使芯片产生破裂。

4)提高电气性能。晶圆厚度越薄背面镀金使地平面越近,器件高频性能越好。

5)提高划片加工成品率。减薄硅片可以减轻封装划片时的加工量,避免划片中产生崩边、崩角等缺陷,降低芯片破损概率等。

2 减薄的工艺流程

3 减薄的原理

国际当前主流晶圆减薄机的整体技术采用了In-Feed磨削原理设计。该技术基本原理是,采用了晶圆自旋,磨轮系统以极低速进给方式磨削。如图1

图1 Schematic of self-rotating grinding mechanism: (a)Experimental set up of wafer grinding; (b) Illustration of the rotating waferand wheel

具体步骤是把所要加工的晶圆粘接到减薄膜上,然后把减薄膜及上面芯片利用真空吸附到多孔陶瓷承片台上,杯形金刚石砂轮工作面的内外圆舟中线调整到硅片的中心位置,硅片和砂轮绕各自的轴线回转,进行切进磨削。磨削深度Tw与砂轮轴向给进速度f 和硅片转速nw关系为

Tw =f/Nw     (1)

根据(1)式,对于给定的磨轮轴向进给速度f,提高硅片转速Nw,可以减小晶圆磨削深度。

目前国际主流的晶圆减薄机,其磨轮轴向进给速度可以控制在1um/min以内。如果晶圆转速为200r/min,则晶圆每转的磨削深度只有0.005um,达到了微量切深的塑性磨削条件。

磨削过程可以分为三个阶段

第一粗磨阶段:使用的金刚砂轮磨料粒度大,砂轮每转的进给量大,单个磨粒的切深度大于临界切削深度。是典型的脆性域磨削。采用相对较大的进给速度,主要考虑提高加工效率。这个阶段占总减薄量的94%左右。这个过程会引起较大的晶格损伤,边缘崩边。

第二精磨阶段:所使用的砂轮磨料力度很小,砂轮每转的给进量很小,一部分磨粒的切深小于临界切削深度,属于延性域切削。另一部分的切深大于临界切削深度,属于脆性域切削。给进速度降低,可以消除前端粗磨产生的损伤,崩边等现象。占这总磨削量的6%。

第三抛光:最后数微米采用精磨抛光,磨削深度小于0.1um,已进入延性域加工范围,此时材料加工表现为先变形,再撕裂的化学变化的方式。

4 晶圆减薄的质量要求

1)晶圆完整性(无破损)

2)晶圆厚度精度及超薄化能力要求

3)晶圆表秒TTV值要求

4)晶圆表面粗糙度要求

5)晶圆表面损伤层厚度(SSD)要求

6)晶圆厚度一致性要求

下表为Disc 减薄机的Spec下载本文

显示全文
专题