视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
8上全等三角形证明经典50题[含答案解析]
2025-09-29 16:39:18 责编:小OO
文档
1.已知:AB=4,AC=2,D是BC中点,AD是整数,求AD

解:延长AD到E,使AD=DE

∵D是BC中点

∴BD=DC 

在△ACD和△BDE中

AD=DE

∠BDE=∠ADC

BD=DC

∴△ACD≌△BDE

∴AC=BE=2

∵在△ABE中  

AB-BE<AE<AB+BE

∵AB=4

即4-2<2AD<4+2

1<AD<3

∴AD=2

2.已知:D是AB中点,∠ACB=90°,求证: 

延长CD与P,使D为CP中点。连接AP,BP

∵DP=DC,DA=DB

∴ACBP为平行四边形

又∠ACB=90

∴平行四边形ACBP为矩形

∴AB=CP=1/2AB

3.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2

证明:连接BF和EF

∵ BC=ED,CF=DF,∠BCF=∠EDF

∴ 三角形BCF全等于三角形EDF(边角边)

∴ BF=EF,∠CBF=∠DEF

连接BE

在三角形BEF中,BF=EF

∴ ∠EBF=∠BEF。

∵ ∠ABC=∠AED。

∴ ∠ABE=∠AEB。

∴ AB=AE。

在三角形ABF和三角形AEF中

AB=AE,BF=EF,

∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF

∴ 三角形ABF和三角形AEF全等。

∴ ∠BAF=∠EAF (∠1=∠2)。

4.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC

过C作CG∥EF交AD的延长线于点G

CG∥EF,可得,∠EFD=CGD

DE=DC

∠FDE=∠GDC(对顶角)

∴△EFD≌△CGD

EF=CG

∠CGD=∠EFD

又,EF∥AB

∴,∠EFD=∠1

∠1=∠2

∴∠CGD=∠2

∴△AGC为等腰三角形,

AC=CG

又 EF=CG

∴EF=AC

5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C

A

证明:延长AB取点E,使AE=AC,连接DE

∵AD平分∠BAC

∴∠EAD=∠CAD

∵AE=AC,AD=AD

∴△AED≌△ACD  (SAS)

∴∠E=∠C

∵AC=AB+BD

∴AE=AB+BD

∵AE=AB+BE

∴BD=BE

∴∠BDE=∠E

∵∠ABC=∠E+∠BDE

∴∠ABC=2∠E

∴∠ABC=2∠C

6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE

证明: 

在AE上取F,使EF=EB,连接CF 

∵CE⊥AB 

∴∠CEB=∠CEF=90° 

∵EB=EF,CE=CE, 

∴△CEB≌△CEF 

∴∠B=∠CFE 

∵∠B+∠D=180°,∠CFE+∠CFA=180° 

∴∠D=∠CFA 

∵AC平分∠BAD 

∴∠DAC=∠FAC 

∵AC=AC 

∴△ADC≌△AFC(SAS) 

∴AD=AF 

∴AE=AF+FE=AD+BE

7.已知:AB=4,AC=2,D是BC中点,AD是整数,求AD

解:延长AD到E,使AD=DE

∵D是BC中点

∴BD=DC

在△ACD和△BDE中

AD=DE

∠BDE=∠ADC

BD=DC

∴△ACD≌△BDE

∴AC=BE=2

∵在△ABE中 

AB-BE<AE<AB+BE

∵AB=4

即4-2<2AD<4+2

1<AD<3

∴AD=2

8.已知:D是AB中点,∠ACB=90°,求证: 

解:延长AD到E,使AD=DE

∵D是BC中点

∴BD=DC

在△ACD和△BDE中

AD=DE

∠BDE=∠ADC

BD=DC

∴△ACD≌△BDE

∴AC=BE=2

∵在△ABE中 

AB-BE<AE<AB+BE

∵AB=4

即4-2<2AD<4+2

1<AD<3

∴AD=2

9.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2

证明:连接BF和EF。

∵ BC=ED,CF=DF,∠BCF=∠EDF。

∴ 三角形BCF全等于三角形EDF(边角边)。

∴ BF=EF,∠CBF=∠DEF。

连接BE。

在三角形BEF中,BF=EF。

∴ ∠EBF=∠BEF。

又∵ ∠ABC=∠AED。

∴ ∠ABE=∠AEB。

∴ AB=AE。

在三角形ABF和三角形AEF中,

AB=AE,BF=EF,

∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF。

∴ 三角形ABF和三角形AEF全等。

∴ ∠BAF=∠EAF (∠1=∠2)。

10.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC

过C作CG∥EF交AD的延长线于点G

CG∥EF,可得,∠EFD=CGD

DE=DC

∠FDE=∠GDC(对顶角)

∴△EFD≌△CGD

EF=CG

∠CGD=∠EFD

又EF∥AB

∴∠EFD=∠1

∠1=∠2

∴∠CGD=∠2

∴△AGC为等腰三角形,

AC=CG

又 EF=CG

∴EF=AC

11.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C

A

证明:延长AB取点E,使AE=AC,连接DE

∵AD平分∠BAC

∴∠EAD=∠CAD

∵AE=AC,AD=AD

∴△AED≌△ACD  (SAS)

∴∠E=∠C

∵AC=AB+BD

∴AE=AB+BD

∵AE=AB+BE

∴BD=BE

∴∠BDE=∠E

∵∠ABC=∠E+∠BDE

∴∠ABC=2∠E

∴∠ABC=2∠C

12.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE

在AE上取F,使EF=EB,连接CF 

∵CE⊥AB 

∴∠CEB=∠CEF=90° 

∵EB=EF,CE=CE, 

∴△CEB≌△CEF 

∴∠B=∠CFE 

∵∠B+∠D=180°,∠CFE+∠CFA=180° 

∴∠D=∠CFA 

∵AC平分∠BAD 

∴∠DAC=∠FAC 

又∵AC=AC 

∴△ADC≌△AFC(SAS) 

∴AD=AF 

∴AE=AF+FE=AD+BE

12. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求证:BC=AB+DC。

在BC上截取BF=AB,连接EF

∵BE平分∠ABC

∴∠ABE=∠FBE

又∵BE=BE

∴⊿ABE≌⊿FBE(SAS)

∴∠A=∠BFE

∵AB//CD

∴∠A+∠D=180º

∵∠BFE+∠CFE=180º

∴∠D=∠CFE

又∵∠DCE=∠FCE   

   CE平分∠BCD

       CE=CE

∴⊿DCE≌⊿FCE(AAS)

∴CD=CF

∴BC=BF+CF=AB+CD

13.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C

AB‖ED,得:∠EAB+∠AED=∠BDE+∠ABD=180度,

∵∠EAB=∠BDE,

∴∠AED=∠ABD,

∴四边形ABDE是平行四边形。

∴得:AE=BD,

∵AF=CD,EF=BC,

∴三角形AEF全等于三角形DBC,

∴∠F=∠C。

14.已知:AB=CD,∠A=∠D,求证:∠B=∠C

证明:设线段AB,CD所在的直线交于E,(当ADBC时,E点是射线AB,DC的交点)。则:

△AED是等腰三角形。

∴AE=DE

而AB=CD

∴BE=CE (等量加等量,或等量减等量)

∴△BEC是等腰三角形

∴∠B=∠C.

15.P是∠BAC平分线AD上一点,AC>AB,求证:PC-PB在AC上取点E,

使AE=AB。

∵AE=AB 

  AP=AP 

 ∠EAP=∠BAE,

∴△EAP≌△BAP

∴PE=PB。

PC<EC+PE

∴PC<(AC-AE)+PB

∴PC-PB<AC-AB。

16.已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:AC-AB=2BE

证明:

在AC上取一点D,使得角DBC=角C

∵∠ABC=3∠C

∴∠ABD=∠ABC-∠DBC=3∠C-∠C=2∠C;

∵∠ADB=∠C+∠DBC=2∠C;

∴AB=AD

∴AC – AB =AC-AD=CD=BD

在等腰三角形ABD中,AE是角BAD的角平分线,

∴AE垂直BD

∵BE⊥AE

∴点E一定在直线BD上,

在等腰三角形ABD中,AB=AD,AE垂直BD

∴点E也是BD的中点

∴BD=2BE

∵BD=CD=AC-AB

∴AC-AB=2BE

17.已知,E是AB中点,AF=BD,BD=5,AC=7,求DC

∵作AG∥BD交DE延长线于G

∴AGE全等BDE 

∴AG=BD=5

∴AGF∽CDF 

  AF=AG=5

∴DC=CF=2 

18.如图,在△ABC中,BD=DC,∠1=∠2,求证:AD⊥BC.

解:延长AD至BC于点E,

    ∵BD=DC  ∴△BDC是等腰三角形

    ∴∠DBC=∠DCB

    又∵∠1=∠2   ∴∠DBC+∠1=∠DCB+∠2

    即∠ABC=∠ACB

    ∴△ABC是等腰三角形

    ∴AB=AC

    在△ABD和△ACD中

    {AB=AC

      ∠1=∠2

      BD=DC

     ∴△ABD和△ACD是全等三角形(边角边)

     ∴∠BAD=∠CAD

     ∴AE是△ABC的中垂线

     ∴AE⊥BC

     ∴AD⊥BC

19.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.

求证:∠OAB=∠OBA

证明:

∵OM平分∠POQ

∴∠POM=∠QOM

∵MA⊥OP,MB⊥OQ

∴∠MAO=∠MBO=90

∵OM=OM

∴△AOM≌△BOM  (AAS)

∴OA=OB

∵ON=ON

∴△AON≌△BON  (SAS)

∴∠OAB=∠OBA,∠ONA=∠ONB

∵∠ONA+∠ONB=180

∴∠ONA=∠ONB=90

∴OM⊥AB

20.(5分)如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.

做BE的延长线,与AP相交于F点,

∵PA//BC

∴∠PAB+∠CBA=180°,又∵,AE,BE均为∠PAB和∠CBA的角平分线

∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形

在三角形ABF中,AE⊥BF,且AE为∠FAB的角平分线

∴三角形FAB为等腰三角形,AB=AF,BE=EF

在三角形DEF与三角形BEC中,

∠EBC=∠DFE,且BE=EF,∠DEF=∠CEB,

∴三角形DEF与三角形BEC为全等三角形,∴DF=BC

∴AB=AF=AD+DF=AD+BC

21.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B

延长AC到E 

使AE=AC 连接 ED

∵ AB=AC+CD

∴ CD=CE

可得∠B=∠E

△CDE为等腰

∠ACB=2∠B

22.(6分)如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.

(1)求证:MB=MD,ME=MF

(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.

       

(1)连接BE,DF.

∵DE⊥AC于E,BF⊥AC于F,

∴∠DEC=∠BFA=90°,DE∥BF,

在Rt△DEC和Rt△BFA中,

∵AF=CE,AB=CD,

∴Rt△DEC≌Rt△BFA(HL),

∴DE=BF.

∴四边形BEDF是平行四边形.

∴MB=MD,ME=MF;

(2)连接BE,DF.

∵DE⊥AC于E,BF⊥AC于F,

∴∠DEC=∠BFA=90°,DE∥BF,

在Rt△DEC和Rt△BFA中,

∵AF=CE,AB=CD,

∴Rt△DEC≌Rt△BFA(HL),

∴DE=BF.

∴四边形BEDF是平行四边形.

∴MB=MD,ME=MF.

23.已知:如图,DC∥AB,且DC=AE,E为AB的中点,

(1)求证:△AED≌△EBC.

(2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出结果,不要求证明):

证明:

∵DC∥AB

∴∠CDE=∠AED

∵DE=DE,DC=AE

∴△AED≌△EDC

∵E为AB中点

∴AE=BE

∴BE=DC

∵DC∥AB

∴∠DCE=∠BEC

∵CE=CE

∴△EBC≌△EDC

∴△AED≌△EBC

24.(7分)如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F.

求证:BD=2CE.

证明:

∵∠CEB=∠CAB=90°

∴ABCE四点共元

∵∠AB E=∠CB E

∴AE=CE

∴∠ECA=∠EAC  

取线段BD的中点G,连接AG,则:AG=BG=DG

∴∠GAB=∠ABG

而:∠ECA=∠GBA (同弧上的圆周角相等)

∴∠ECA=∠EAC=∠GBA=∠GAB

而:AC=AB

∴△AEC≌△AGB

∴EC=BG=DG

∴BE=2CE

25、如图:DF=CE,AD=BC,∠D=∠C。求证:△AED≌△BFC。

证明:∵DF=CE,

∴DF-EF=CE-EF,

即DE=CF,

在△AED和△BFC中,

∵ AD=BC, ∠D=∠C ,DE=CF 

∴△AED≌△BFC(SAS) 

26、(10分)如图:AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。

求证:AM是△ABC的中线。

证明:

∵BE‖CF

∴∠E=∠CFM,∠EBM=∠FCM

∵BE=CF

∴△BEM≌△CFM

∴BM=CM

∴AM是△ABC的中线.

   27、(10分)如图:在△ABC中,BA=BC,D是AC的中点。求证:BD⊥AC。

∵△ABD和△BCD的三条边都相等

∴△ABD=△BCD

∴∠ADB=∠CD

∴∠ADB=∠CDB=90°

∴BD⊥AC

28、(10分)AB=AC,DB=DC,F是AD的延长线上的一点。求证:BF=CF

在△ABD与△ACD中

AB=AC

BD=DC

AD=AD

∴△ABD≌△ACD

∴∠ADB=∠ADC

∴∠BDF=∠FDC

在△BDF与△FDC中

BD=DC

∠BDF=∠FDC

DF=DF

∴△FBD≌△FCD

∴BF=FC

29、(12分)如图:AB=CD,AE=DF,CE=FB。求证:AF=DE。

∵AB=DC

AE=DF,

CE=FB 

CE+EF=EF+FB

∴△ABE=△CDF

∵∠DCB=∠ABF

AB=DC BF=CE

△ABF=△CDE

∴AF=DE

30.公园里有一条“Z”字形道路ABCD,如图所示,其中AB∥CD,在AB,CD,BC三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点,试说明三只石凳E,F,M恰好在一条直线上.

证明:连接EF

∵AB∥CD

∴∠B=∠C

∵M是BC中点

∴BM=CM

在△BEM和△CFM中

BE=CF

∠B=∠C

BM=CM

∴△BEM≌△CFM(SAS)

∴CF=BE

31.已知:点A、F、E、C在同一条直线上, AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.

∵AF=CE,FE=EF.

∴AE=CF.

∵DF//BE,

∴∠AEB=∠CFD(两直线平行,内错角相等)

∵BE=DF

∴:△ABE≌△CDF(SAS) 

32.已知:如图所示,AB=AD,BC=DC,E、F分别是DC、BC的中点,求证: AE=AF。 

连接BD;

∵AB=AD BC=D

∴∠ADB=∠ABD  ∠CDB=∠ABD;两角相加,∠ADC=∠ABC;

∵BC=DC   E\\F是中点

∴DE=BF;

∵AB=AD  DE=BF

∠ADC=∠ABC

∴AE=AF。

33.如图,在四边形ABCD中,E是AC上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.                             

证明:

在△ADC,△ABC中

∵AC=AC,∠BAC=∠DAC,∠BCA=∠DCA

∴△ADC≌△ABC(两角加一边)

∵AB=AD,BC=CD

在△DEC与△BEC中

∠BCA=∠DCA,CE=CE,BC=CD

∴△DEC≌△BEC(两边夹一角)

∴∠DEC=∠BEC

34.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.

∵AD=DF

∴AC=DF

∵AB//DE

∴∠A=∠EDF

又∵BC//EF

∴∠F=∠BCA

∴△ABC≌△DEF(ASA) 

35.已知:如图,AB=AC,BDAC,CEAB,垂足分别为D、E,BD、CE相交于点F,求证:BE=CD.

证明:

∵BD⊥AC

∴∠BDC=90°

∵CE⊥AB

∴∠BEC=90°

∴∠BDC=∠BEC=90°

∵AB=AC

∴∠DCB=∠EBC

∴BC=BC

∴Rt△BDC≌Rt△BEC(AAS)

∴BE=CD

36、如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F。

求证:DE=DF.

证明:

∵AD是∠BAC的平分线

∴∠EAD=∠FAD

∵DE⊥AB,DF⊥AC

∴∠BFD=∠CFD=90°

∴∠AED与∠AFD=90°

在△AED与△AFD中

∠EAD=∠FAD

AD=AD

∠AED=∠AFD

∴△AED≌△AFD(AAS)

 ∴AE=AF

在△AEO与△AFO中

 ∠EAO=∠FAO

 AO=AO

AE=AF

∴△AEO≌△AFO(SAS)

∴∠AOE=∠AOF=90°

∴AD⊥EF

37.已知:如图, ACBC于C , DEAC于E , ADAB于A , BC =AE.若AB = 5 ,求AD 的长?

∵AD⊥AB

∴∠BAC=∠ADE

又∵AC⊥BC于C,DE⊥AC于E

根据三角形角度之和等于180度

∴∠ABC=∠DAE

∵BC=AE,△ABC≌△DAE(ASA)

∴AD=AB=5

38.如图:AB=AC,ME⊥AB,MF⊥AC,垂足分别为E、F,ME=MF。求证:MB=MC

证明:

∵AB=AC

∴∠B=∠C

∵ME⊥AB,MF⊥AC

∴∠BEM=∠CFM=90°

在△BME和△CMF中

∵ ∠B=∠C ∠BEM=∠CFM=90° ME=MF 

∴△BME≌△CMF(AAS)

∴MB=MC.

39.如图,给出五个等量关系:①②③④⑤.请你以其中两个为条件,另三个中的一个为结论,推出一个正确的结论(只需写出一种情况),并加以证明.

已知:①AD=BC,⑤∠DAB=∠CBA

求证:△DAB≌△CBA

证明:∵AD=BC,∠DAB=∠CBA

又∵AB=AB

∴△DAB≌△CBA

40.在△ABC中,,,直线经过点,且于,于.(1)当直线绕点旋转到图1的位置时,求证: ①≌;②;

(2)当直线绕点旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.

(1)

①∵∠ADC=∠ACB=∠BEC=90°,

∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.

∴∠CAD=∠BCE.

∵AC=BC,

∴△ADC≌△CEB.

②∵△ADC≌△CEB,

∴CE=AD,CD=BE.

∴DE=CE+CD=AD+BE.

(2)∵∠ADC=∠CEB=∠ACB=90°,

∴∠ACD=∠CBE.

又∵AC=BC,

∴△ACD≌△CBE.

∴CE=AD,CD=BE.

∴DE=CE﹣CD=AD﹣BE

41.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。求证:(1)EC=BF;(2)EC⊥BF

(1)∵AE⊥AB,AF⊥AC,

∴∠BAE=∠CAF=90°,

∴∠BAE+∠BAC=∠CAF+∠BAC,

即∠EAC=∠BAF,

在△ABF和△AEC中,

∵AE=AB,∠EAC=∠BAF,AF=AC,

∴△ABF≌△AEC(SAS),

∴EC=BF;

(2)如图,根据(1),△ABF≌△AEC,

∴∠AEC=∠ABF,

∵AE⊥AB,

∴∠BAE=90°,

∴∠AEC+∠ADE=90°,

∵∠ADE=∠BDM(对顶角相等),

∴∠ABF+∠BDM=90°,

在△BDM中,∠BMD=180°-∠ABF-∠BDM=180°-90°=90°,

∴EC⊥BF. 

42.如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB。求证:(1)AM=AN;(2)AM⊥AN。

证明:

(1)

∵BE⊥AC,CF⊥AB

∴∠ABM+∠BAC=90°,∠ACN+∠BAC=90°

∴∠ABM=∠ACN

∵BM=AC,CN=AB

∴△ABM≌△NAC

∴AM=AN

(2)

∵△ABM≌△NAC

∴∠BAM=∠N

∵∠N+∠BAN=90°

∴∠BAM+∠BAN=90°

即∠MAN=90°

∴AM⊥AN

43.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.求证:BC∥EF

在△ABF和△CDE中

,AB=DE

∠A=∠D

AF=CD

∴△ABF≡△CDE(边角边)

∴FB=CE

在四边形BCEF中

FB=CE

BC=EF

∴四边形BCEF是平行四边形

∴BC‖EF

44.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,则AB与AC+BD相等吗?请说明理由

在AB上取点N ,使得AN=AC 

∵∠CAE=∠EAN 

∴AE为公共,

∴△CAE≌△EAN

∴∠ANE=∠ACE

又∵AC平行BD

∴∠ACE+∠BDE=180

而∠ANE+∠ENB=180

∴∠ENB=∠BDE

∠NBE=∠EBN

∵BE为公共边

∴△EBN≌△EBD

∴BD=BN

∴AB=AN+BN=AC+BD

45、(10分) 如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF.

证明:

∵AD是△ABC的中线 

BD=CD 

∵DF=DE(已知) 

∠BDE=∠FDC 

∴△BDE≌△FDC 

则∠EBD=∠FCD 

∴BE∥CF(内错角相等,两直线平行)。 

46、(10分)已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,.

求证:.

证明:

∵DE⊥AC,BF⊥AC

∴∠CED=∠AFB=90º

又∵AB=CD,BF=DE

∴Rt⊿ABF≌Rt⊿CDE(HL)

∴AF=CE

∠BAF=∠DCE

∴AB//CD

47、(10分)如图,已知∠1=∠2,∠3=∠4,求证:AB=CD 

∵,∠3=∠4

∴OB=OC

在△AOB和△DOC中

∠1=∠2

OB=OC

∠AOB=∠DOC

△AOB≌△DOC

∴AO=DO        AO+OC=DO+OB        AC=DB

在△ACB和△DBC中

AC=DB

,∠3=∠4

BC=CB

△ACB≌△DBC

∴AB=CD

48、 (10分)如图,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE与DE的大小与位置关系,并证明你的结论.

CE>DE。当∠AEB越小,则DE越小。

证明:

过D作AE平行线与AC交于F,连接FB

由已知条件知AFDE为平行四边形,ABEC为矩形 ,且△DFB为等腰三角形。

RT△BAE中,∠AEB为锐角,即∠AEB<90°

∵DF//AE  ∴∠FDB=∠AEB<90°

△DFB中  ∠DFB=∠DBF=(180°-∠FDB)/2>45°

RT△AFB中,∠FBA=90°-∠DBF <45°  

∠AFB=90°-∠FBA>45°

∴AB>AF

∵AB=CE  AF=DE

∴CE>DE

49、 (10分)如图,已知AB=DC,AC=DB,BE=CE,求证:AE=DE.

∵AB=DC,AC=DB,BC=BC

∴△ABC≌△DCB,

∴∠ABC=∠DCB

又∵BE=CE,AB=DC

∴△ABE≌△DCE

∴AE=DE

50.如图9所示,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:∠ADC=∠BDE.

作CG⊥AB,交AD于H,

则∠ACH=45º,∠BCH=45º

∵∠CAH=90º-∠CDA, ∠BCE=90º-∠CDA ∴∠CAH=∠BCE

又∵AC=CB, ∠ACH=∠B=45º

∴△ACH≌△CBE, ∴CH=BE

又∵∠DCH=∠B=45º, CD=DB

∴△CFD≌△BED

∴∠ADC=∠BDE 下载本文

显示全文
专题