视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
离散数学课后习题答案 主编姜泽渠 重庆大学出版社
2025-09-29 17:05:02 责编:小OO
文档
第1章到第8章的课后习题参

必须先下载后,才可以看到答案。

第十六章部分课后习题参

1、画出所有5阶和7阶非同构的无向树.

2、一棵无向树T有5片树叶,3个2度分支点,其余的分支点都是3度顶点,问T有几个顶点?

解:设3度分支点个,则

     ,解得

T有11个顶点

3、无向树T有8个树叶,2个3度分支点,其余的分支点都是4度顶点,问T有几个4度分支点?根据T的度数列,请至少画出4棵非同构的无向树。

解:设4度分支点个,则

     ,解得

度数列111111113344

4、棵无向树T有(i=2,3,…,k)个i度分支点,其余顶点都是树叶,问T应该有几片树叶?

解:设树叶片,则

     ,解得

评论:2,3,4题都是用了两个结论,一是握手定理,二是

5、n(n≥3)阶无向树T的最大度至少为几?最多为几?

解:2,n-1

6、若n(n≥3)阶无向树T的最大度 =2,问T中最长的路径长度为几?

解:n-1

7、证明:n(n≥2) 阶无向树不是欧拉图.

证明:无向树没有回路,因而不是欧拉图。

8、证明:n(n≥2) 阶无向树不是哈密顿图.

证明:无向树没有回路,因而不是哈密顿图。

9、证明:任何无向树T都是二部图.

证明:无向树没有回路,因而不存在技术长度的圈,是二部图。

10、什么样的无向树T既是欧拉图,又是哈密顿图?

解:一阶无向树

14、设e为无向连通图G中的一条边, e在G的任何生成树中,问e应有什么性质?

解:e是桥

15、设e为无向连通图G中的一条边, e不在G的任何生成树中, 问e应有什么性质?

解:e是环                     

23、已知n阶m条的无向图 G是k(k≥2)棵树组成的森林,证明:m = n-k.;

证明:数学归纳法。k=1时, m = n-1,结论成立;

设k=t-1(t-1)时,结论成立,当k=t时, 无向图 G是t棵树组成的森林,任取两棵树,每棵树任取一个顶点,这两个顶点连线。则所得新图有t-1棵树,所以m = n-(k-1).

所以原图中m = n-k

得证。

24、在图16.6所示2图中,实边所示的生成子图T是该图的生成树.

 (1)指出T的弦,及每条弦对应的基本回路和对应T的基本回路系统.

(2) 指出T的所有树枝, 及每条树枝对应的基本割集和对应T的基本割集系统.

       

                (a)                             (b)

                           图16.16 

解:(a)T的弦:c,d,g,h

T的基本回路系统: S={{a,c,b},{a,b,f,d},{e,a,b,h},{e,a,b,f,g}}

T的所有树枝: e,a,b,f

T的基本割集系统: S={{e,g,h},{a,c,d,g,h},{b,c,d,g,h},{f,d,g}}

(b)有关问题仿照给出

25、求图16.17所示带权图中的最小生成树.

       

(a)                       (b)

图16.17

解:

注:答案不唯一。

37、画一棵权为3,4,5,6,7,8,9的最优2叉树,并计算出它的权.

38.下面给出的各符号串集合哪些是前缀码?

      A1={0,10,110,1111}   是前缀码

      A2={1,01,001,000}    是前缀码

      A3={1,11,101,001,0011}   不是前缀码

      A4={b,c,aa,ac,aba,abb,abc}      是前缀码

      A5={ b,c,a,aa,ac,abc,abb,aba}   不是前缀码

41.设7个字母在通信中出现的频率如下:

                a: 35%               b: 20%

                c: 15%               d: 10%

                e: 10%               f: 5%

                g: 5%

用Huffman算法求传输它们的前缀码.要求画出最优树,指出每个字母对应的编码.并指出传输10n(n≥2)个按上述频率出现的字母,需要多少个二进制数字.

解:

a:01  b:10  c:000  d:110  e:001  f:1111  g:1110

W(T)=5*4+5*4+10*3+10*3+15*3+20*2+35*2=255

传输10n(n≥2)个按上述频率出现的字母,需要255*10n-2个二进制数字.下载本文

显示全文
专题