视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
2010年高考试题数学文(安徽卷).doc
2025-09-29 17:04:09 责编:小OO
文档
绝密★启用前

2010年普通高等学校招生全国统一考试(安徽卷)

数  学(文科)

    本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。全卷满分l50分,考试时间l20分钟。

考生注意事项:

1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。务必在答题卡背面规定的地方填写姓名和座位号后两位。

2.答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰。作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。

4.考试结束,务必将试题卷和答题卡一并上交。

参考公式:

                                           S表示底面积,h表示底面上的高

如果事件A与B互斥,那么                   棱柱体积V=Sh

  P(A+B)=P(A)+P(B)                        棱锥体积V=

第Ⅰ卷(选择题 共50分)

一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.

(1)若A=,B=,则=

  (A)(-1,+∞)  (B)(-∞,3)    (C)(-1,3)    (D)(1,3)

1.C

【解析】,,故选C.

【方法总结】先求集合A、B,然后求交集,可以直接得结论,也可以借助数轴得交集.

(2)已知,则i()=

  (A)    (B)    (C)    (D)

2.B

【解析】,选B.

【方法总结】直接乘开,用代换即可.

(3)设向量,,则下列结论中正确的是

(A)              (B)

(C)               (D)与垂直

3.D

【解析】,,所以与垂直.

【规律总结】根据向量是坐标运算,直接代入求解,判断即可得出结论.

(4)过点(1,0)且与直线x-2y-2=0平行的直线方程是

(A)x-2y-1=0        (B)x-2y+1=0      (C)2x+y-2=0        (D)x+2y-1=0

4.A

【解析】设直线方程为,又经过,故,所求方程为.

【方法技巧】因为所求直线与与直线x-2y-2=0平行,所以设平行直线系方程为,代入此直线所过的点的坐标,得参数值,进而得直线方程.也可以用验证法,判断四个选项中方程哪一个过点(1,0)且与直线x-2y-2=0平行.

(5)设数列的前n项和,则的值为

(A) 15              (B)  16         (C)   49         (D)

5.A

【解析】.

【方法技巧】直接根据即可得出结论.

(6)设,二次函数的图像可能是

6.D

【解析】当时,、同号,(C)(D)两图中,故,选项(D)符合

【方法技巧】根据二次函数图像开口向上或向下,分或两种情况分类考虑.另外还要注意c值是抛物线与y轴交点的纵坐标,还要注意对称轴的位置或定点坐标的位置等.

(7)设,则a,b,c的大小关系是

(A)a>c>b        (B)a>b>c        (C)c>a>b     (D)b>c>a

7.A

【解析】在时是增函数,所以,在时是减函数,所以。

【方法总结】根据幂函数与指数函数的单调性直接可以判断出来.

(8)设x,y满足约束条件则目标函数z=x+y的最大值是

(A)3                (B) 4                (C) 6              (D)8

8.C

【解析】不等式表示的区域是一个三角形,3个顶点是,目标函数在取最大值6。

【规律总结】线性规划问题首先作出可行域,若为封闭区域(即几条直线围成的区域)则区域端点的值是目标函数取得最大或最小值,求出直线交点坐标代入目标函数即可求出最大值.

(9)一个几何体的三视图如图,该几何体的表面积是

(A)372                   (B)360  

(C)292                   (D)280

9.B

【解析】该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和。

.

【方法技巧】把三视图转化为直观图是解决问题的关键.又三视图很容易知道是两个长方体的组合体,画出直观图,得出各个棱的长度.把几何体的表面积转化为下面长方体的全面积加上面长方体的4个侧面积之和。

(10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是

(A)        (A)             (A)          (A)

10.C

【解析】正方形四个顶点可以确定6条直线,甲乙各自任选一条共有36个基本事件。两条直线相互垂直的情况有5种(4组邻边和对角线)包括10个基本事件,所以概率等于.

【方法技巧】对于几何中的概率问题,关键是正确作出几何图形,分类得出基本事件数,然后得所求事件保护的基本事件数,进而利用概率公式求概率.

第Ⅱ卷(非选择题共100分)

二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置·

(11)命题“存在,使得”的

否定是       

11.对任意,都有.

【解析】特称命题的否定时全称命题,“存在”对应“任意”.

【误区警示】这类问题的常见错误是没有把全称量词改为存在量词,或者对于“>”的否定用“<”了.这里就有注意量词的否定形式.如“都是”的否定是“不都是”,而不是“都不是”.

(12)抛物线的焦点坐标是       

12. 

【解析】抛物线,所以,所以焦点.

【误区警示】本题考查抛物线的交点.部分学生因不会求,或求出后,误认为焦点,还有没有弄清楚焦点位置,从而得出错误结论.

(13)如图所示,程序框图(算法流程图)的输出值x=       

13.12

【解析】程序运行如下:,输出12。

【规律总结】这类问题,通常由开始一步一步运行,根据判断条件,要么几步后就会输出结果,要么就会出现规律,如周期性,等差或等比数列型.

(14)某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是       .

14. 

【解析】该地拥有3套或3套以上住房的家庭可以估计有:户,

所以所占比例的合理估计是.

【方法总结】本题分层抽样问题,首先根据拥有3套或3套以上住房的家庭所占的比例,得出100 000户,居民中拥有3套或3套以上住房的户数,它除以100 000得到的值,为该地拥有3套或3套以上住房的家庭所占比例的合理估计.

(15)若,则下列不等式对一切满足条件的恒成立的是       (写出所有正确命题的编号).

①;        ②;    ③; 

 ④;    ⑤

15.①,③,⑤

【解析】令,排除②②;由,命题①正确;

,命题③正确;,命题⑤正确。

【方法总结】

三、解答题:本大题共6小题.共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内。

16、(本小题满分12分)

    的面积是30,内角所对边长分别为,。

    (Ⅰ)求;

(Ⅱ)若,求的值。

16.【命题意图】本题考查同角三角函数的基本关系,三角形面积公式,向量的数量积,利用余弦定理解三角形以及运算求解能力.

【解题指导】(1)根据同角三角函数关系,由得的值,再根据面积公式得;直接求数量积.由余弦定理,代入已知条件,及求a的值.

解:由,得.

又,∴.

(Ⅰ).

(Ⅱ),

∴.

【规律总结】根据本题所给的条件及所要求的结论可知,需求的值,考虑已知的面积是30,,所以先求的值,然后根据三角形面积公式得的值.第二问中求a的值,根据第一问中的结论可知,直接利用余弦定理即可.

17、(本小题满分12分)

椭圆经过点,对称轴为坐标轴,

焦点在轴上,离心率。

    (Ⅰ)求椭圆的方程;

(Ⅱ)求的角平分线所在直线的方程。

17.【命题意图】本题考查椭圆的定义及标准方程,椭圆的简单几何性质,直线的点斜式方程与一般方程,点到直线的距离公式等基础知识;考查解析几何的基本思想、综合运算能力.

【解题指导】(1)设椭圆方程为,把点代入椭圆方程,把离心率用表示,再根据,求出,得椭圆方程;(2)可以设直线l上任一点坐标为,根据角平分线上的点到角两边距离相等得.

解:(Ⅰ)设椭圆E的方程为

【规律总结】对于椭圆解答题,一般都是设椭圆方程为,根据题目满足的条件求出,得椭圆方程,这一问通常比较简单;(2)对于角平分线问题,利用角平分线的几何意义,即角平分线上的点到角两边距离相等得方程.

18、(本小题满分13分)

   某市2010年4月1日—4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):

         61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,

         77,86,81,83,82,82,,79,86,85,75,71,49,45,

(Ⅰ)  完成频率分布表;

(Ⅱ)作出频率分布直方图;

(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。

请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.

18.【命题意图】本题考查频数,频率及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和运用意识. 

【解题指导】(1)首先根据题目中的数据完成频率分布表,作出频率分布直方图,根据污染指数,确定空气质量为优、良、轻微污染、轻度污染的天数。

(Ⅲ)答对下述两条中的一条即可:

(1)该市一个月中空气污染指数有2天处于优的水平,占当月天数的,有26天处于良的水平,占当月天数的,处于优或良的天数共有28天,占当月天数的。说明该市空气质量基本良好。

(2)轻微污染有2天,占当月天数的。污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的,超过50%,说明该市空气质量有待进一步改善。

【规律总结】在频率分布表中,频数的和等于样本容量,频率的和等于1,每一小组的频率等于这一组的频数除以样本容量.频率分布直方图中,小矩形的高等于每一组的频率/组距,它们与频数成正比,小矩形的面积等于这一组的频率.对于开放性问题的回答,要选择适当的数据特征进行考察,根据数据特征分析得出实际问题的结论.

19.(本小题满分13分)

如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点,

(Ⅰ)求证:FH∥平面EDB;

(Ⅱ)求证:AC⊥平面EDB; 

(Ⅲ)求四面体B—DEF的体积;

19.【命题意图】本题考查空间线面平行、线面垂直、面面垂直的判断与证明,考查体积的计算等基础知识,同时考查空间想象能力、推理论证能力和运算能力.

【解题指导】(1)设底面对角线交点为G,则可以通过证明EG∥FH,得∥平面;(2)利用线线、线面的平行与垂直关系,证明FH⊥平面ABCD,得FH⊥BC,FH⊥AC,进而得EG⊥AC,平面;(3)证明BF⊥平面CDEF,得BF为四面体B-DEF的高,进而求体积.

【规律总结】本题是典型的空间几何问题,图形不是规则的空间几何体,所求的结论是线面平行与垂直以及体积,考查平行关系的判断与性质.解决这类问题,通常利用线线平行证明线面平行,利用线线垂直证明线面垂直,通过求高和底面积求四面体体积. 

20.(本小题满分12分)

设函数,,求函数的单调区间与极值。

20.【命题意图】本题考查导数的运算,利用导数研究函数的单调性与极值的方法,考查综合应用数学知识解决问题的能力.

【解题指导】(1)对函数求导,对导函数用辅助角公式变形,利用导数等于0得极值点,通过列表的方法考查极值点的两侧导数的正负,判断区间的单调性,求极值.

【思维总结】对于函数解答题,一般情况下都是利用导数来研究单调性或极值,利用导数为0得可能的极值点,通过列表得每个区间导数的正负判断函数的单调性,进而得出极值点.

(21)(本小题满分13分)

设是坐标平面上的一列圆,它们的圆心都在轴的正半轴上,且都与直线相切,对每一个正整数,圆都与圆相互外切,以表示的半径,已知为递增数列.

(Ⅰ)证明:为等比数列;

(Ⅱ)设,求数列的前项和. 

21.【命题意图】本题考查等比列的基本知识,利用错位相减法求和等基本方法,考察抽象概括能力以及推理论证能力.

【解题指导】(1)求直线倾斜角的正弦,设的圆心为,得,同理得,结合两圆相切得圆心距与半径间的关系,得两圆半径之间的关系,即中与的关系,证明为等比数列;(2)利用(1)的结论求的通项公式,代入数列,然后用错位相减法求和.

【方法技巧】对于数列与几何图形相结合的问题,通常利用几何知识,并结合图形,得出关于数列相邻项与之间的关系,然后根据这个递推关系,结合所求内容变形,得出通项公式或其他所求结论.对于数列求和问题,若数列的通项公式由等差与等比数列的积构成的数列时,通常是利用前n项和乘以公比,然后错位相减解决.下载本文

显示全文
专题