复杂网络的线性广义同步
卞秋香1,2姚洪兴1
1.江苏大学理学院,镇江212013;2.江苏科技大学数理学院,镇江212003 基于Lyapunov稳定性理论,研究了两个复杂网络的线性广义同步(LGS)问题.通过构造 控制器实现了两个参数不确定时滞复杂网络的LGS,给定驱动网络以及线性映射,可以构造响应网 络来实现LGS.结果可用于指导能源供求网络、金融网络等的平衡发展.以企业家激励网络及企 业经济增长要素网络进行数值仿真,参数不确定也可实现两个网络的LGS,从而在一种和谐同步发 展的状态下,能更好的实现企业经济的稳步发展.当企业家激励网络参数未知时,可构造响应网络 来实现LGS,一方面可对该网络进行同步控制,达到预期的效果;另一方面可对参数进行辨识,确 定网络结构.
复杂网络;时滞;控制器;线性广义同步
Linear generalized synchronization of complex networks
BIAN Qiu-xiangYAO Hong-xing
2009-12-29
国家自然科学基金(70871056)
作者简介:卞秋香(1969-),女,山东广饶人,博士,副教授,研究方向:复杂系统的分析与控制;姚洪兴(1964-),男,江苏扬州人,教授,博士生导师,研究方向:复杂系统建模、非线性分析与控制.
万方数据(3)万方数据
(13)万方数据
(16)万方数据
(28)万方数据
万方数据
@@[1] Wang X F, Chen G R. Synchronization in small-world dynamical networks[J]. International Journal of Bifurcation & Chaos, 2002, 12(1): 187-192.
@@[2] Xiao Y Z, Xu W, Li X C, Tang S F. Adaptive complete synchronization of chaotic dynamical network with unknown and mismatched parameters[J]. Chaos, 2007, 17(3): 033118.
@@[3] Zhou J, Xiang L, Liu Z R. Global synchronization in general complex delayed dynamical networks and its applications[J]. Physica A: Statistical Mechanics and Its Applications, 2007, 385(2): 729-742.
@@[4] Zhou J, Lu J A, Lü J H. Adaptive synchronization of an uncertain complex dynamical network[J]. IEEE Trans actions on Automatic Control, 2006, 51(4): 652-656.
@@[5] Zheng S, Bi Q S, Cai G L. Adaptive projective synchronization in complex networks with time-varying coupling delay[J]. Physics Letters A, 2009, 373(17): 1553-1559.
@@[6] Wu X J, Lu H T. Generalized projective synchronization between two different general complex dynamical networks with delayed coupling[J]. Physics Letters A, 2010, 374(38): 3932-3941.
@@[7] Hung Y C, Huang Y T, Ho M C, et al. Paths to globally generalized synchronization in scale-free networks[J]. Physical Review E, 2008, 77: 016202.
@@[8] Xu X L, Chen Z Q, Si G Y, et al. A novel definition of generalized synchronization on networks and a numerical simulation example[J]. Computers & Mathematics with Applications, 2008, 56(11): 2789-2794.
@@[9]黄霞,曹进德.参数未知超混沌系统的自适应广义同步控制[C]//第二十五届中国控制会议,哈尔滨黑龙江.2006: 924- 927.
Huang X, Cao J D. Generalized synchronization of hyperchaotic systems with unknown parameters using adaptive control[C]//Proceedings of the 25th Chinese Control Conference, Harbin, Heilongjiang, 2006: 924-927.
@@[10] Hu A H, Xu Z Y. Stochastic linear generalized synchronization of chaotic systems via robust control[J]. Physics Letters A, 2008, 372(21): 3814-3818.
@@[11] Zhou J, Lu J A. Topology indentification of weighted complex dynamical network[J]. Physica A, 2007, 386(1): 481-491.
@@[12] Li K, Lai C H, Adaptive-impulsive synchronization of uncertain complex dynamical networks[J]. Physics Letters A, 2008, 372(10): 1601-1606.
@@[13] Xu Y H, Zhou W N, Fang J A, et al. Topology identification and adaptive synchronization of uncertain complex networks with non-derivative and derivative coupling[J]. Journal of the Franklin Institute, 2010, 347(8): 1566- 1576.
@@[14] Liu H, Lu J A, Lü J H, et al. Structure identification of uncertain general complex dynamical networks with time delay[J]. Automatica, 2009, 45(8): 1799-1807.
@@[15]徐玉华,谢承蓉,李军.基于Lorenz方程的企业家激励混沌经济模型分析[J].商场现代化,2007,26:53-54.Xu Y H, Xie C R, Li J. The analysis of entrepreneur's incentive chaos economic mode based on Lorenz equation[J].Market Modernization, 2007, 26: 53-54.
万方数据下载本文