摘要
研讨了不合热处理工艺对304奥氏体不锈钢组织和机能的影响.304奥氏体不锈钢试块进行1050℃保温30min固溶处理,分离在水中和在空气中冷却.成果发明得出组织均为单相奥氏体,水中冷却不锈钢硬度更高,解释水冷后获得更大的内应力.原材料进行650℃保温60min敏化处理和800℃保温60min敏化处理,比较得出在800℃保温60min时更轻易产生晶间腐化.是以,304不锈钢热处理时应防止在敏化温度区间内较高温度逗留较长的时光.
奥氏体不锈钢是指在常温下具有奥氏体组织的不锈钢.钢中含Cr约18%.含Ni8%—10%.C约0.1%时,具有稳固的奥氏体组织.奥氏体不锈钢无磁性并且具有高韧性和塑性,但强度较低,不成能经由过程相变使之强化,仅能经由过程冷加工进行强化.如参加S,Ca,Se,等元素,则具有优越的易切削性.此类钢除耐氧化性.酸介质腐化外,假如含有Mo.Cu等元素还能耐硫酸.磷酸以及甲酸.醋酸等的腐化.此类钢中的含碳量若低于0.03%或含Ti.N,就可明显进步其耐晶间腐化机能.因为奥氏体不锈钢具有周全的和优越的分解机能,在各行各业中获得了普遍的运用[1—5].
304奥氏体不锈钢作为一种用处普遍的钢,具有优越的腐化性.耐热性.低温强度和机械机能;冲压.曲折等热加工性好,无热处理硬化现象,无磁性.用于家庭用品(餐具.橱柜.汽锅.热水器),汽车配件,医疗器具,建材,化学,食物工业,船舶部件.依据不合的请求,其经常运用的热处理工艺重要有:固溶处理.稳固化处理和去应力处理等[6,7],由其运用的普遍性,其热处理工艺的研讨对临盆有很好的指点意义.1试验办法试验原材料为304奥氏体不锈钢(国内商标为0Cr18Ni9)化学成分为碳≤0.08%,硅≤1.00%,锰≤2.00%,磷≤0.045%,硫0.03%,镍8.0%—10.5%,铬18%—20%.原材料经由过程热轧而成,切割成直径20mm,高20mm的圆柱体试样.对试样分离在1050℃,保温30min空冷和水冷进行固溶处理,在650℃并保温1h段后空冷和800℃并保温1h空冷至室温,进行敏化处理.对原材料和热处理试样采取洛氏硬度计和金相显微镜进行硬度和金相组织剖析.
2试验成果与评论辩论
2.1原材料搀杂物的测定成果
按照国标《GB/T10561—2005钢中非金属搀杂物含量的测定》试验办法,对原材料非金属搀杂物如图1所示,在100倍下与尺度图比较,可以得出原材料含有两类搀杂物.沿轧制偏向排成一列为氧化铝类(B类),从粒度粗细和长度可以断定是细系,1.5级.形态比小,成黑色无规矩散布的颗粒为球状氧化物类(D类),从粒度和数目可以断定是细系,1.5级.所以测定成果为细系B1.5,细系D1.5.是以,搀杂物等级相符国度尺度.
2.2原材料的金相组织及力学机能剖析
原材料金相组织如图2所示.浸蚀办法为高氯化铁5g,盐酸10mL,酒精500mL混杂液,浸蚀10min.奥氏体晶粒平均渺小,依据《GB/T6394—2002金属平均晶粒度测定法》,晶粒度可评定为5.5级.别的,晶粒中伴随孪晶,黑点为非金属搀杂物.从金相图片可看出此原材料已经经由固溶处理.原材料各类硬度测量如表1所示,硬度散布比较平均,平均值为HB187阁下.
表1原材料各类硬度测量值表
| 测量次数 | 1 | 2 | 3 | 4 | 5 | 平均值 |
| 硬度值/HBW | 187 | 185 | 1 | 190 | 186 |
2.3.1固溶处理对组织的影响
将304奥氏体不锈钢原材料加热到1050℃,保温30min,经由过程快冷至室温,进行从新固溶处理.固溶处理后的组织如图3,图4所示.图3为空冷后的试样金相组织,图4为水冷后的试样金相组织.浸蚀办法为高氯化铁5g,盐酸10mL,酒精500mL混杂液,浸蚀10min.
从金相组织照片可以看出,固溶处理后的金相试样比较难腐化,晶界不是很明显.此金相组织为奥氏体晶粒,晶粒比较平均渺小,并伴随孪晶,黑点为碳化物.依据《GB/T6394—2002金属平均晶粒度测定法》进行评级,空冷后晶粒度为5.5级阁下,与原材料晶粒度比拟变更不大,是以也可以推知原材料的固溶处理时也是进行空冷的.水冷后晶粒度有所增大,为6.5级阁下.
2.3.2固溶处理对力学机能的影响
固溶处理时空冷和水冷所得的各类硬度值如表2所示.从表2可以看出,当冷却速度进步时,奥氏体不锈钢的硬度也响应地增长.奥氏体不锈钢在冷却时并没有组织的变更,而硬度却升高了.这是因为奥氏体不锈钢在快速冷却时,外层受急冷紧缩而变硬,内部温度仍然高而软,因为外层之紧缩而受塑性紧缩变形.如同受到冲床加工,高低紧缩而横向膨胀.因为外冷内热,持续冷却到室温则内部之紧缩较外层多.因为内部的紧缩在外层产生紧缩应力,这种热应力使其概况有极大压应力,促使奥氏体不锈钢概况抗疲惫强度增长,硬度也增长[8].因为这种残存压应力对材料的力学机能产生好的感化.是以,在奥氏体不锈钢固溶处理时用水冷比用空冷好.
2.3.3敏化处理
敏化处理是指已经由固溶处理的奥氏体不锈钢,在500—850℃度加热,将铬原子从奥氏体中以Cr23C6碳化物的情势沿晶界析出,造成奥氏体不锈钢的晶界腐化迟钝性加强,这就是敏化处理.工艺1:将304奥氏体不锈钢加热到650℃,并保温60min,然后出炉空冷到室温.敏化后在不合倍率下看到的金相组织如图6中A.B图所示.工艺2:将304奥氏体不锈钢加热到800℃,并保温1h,然后出炉空冷到室温.敏化后在不合倍率下看到的金相组织如图6中C.D所示.浸蚀办法均为高氯化铁5g,盐酸10mL,酒精500mL混杂液,浸蚀时光均为10min.从金相组织可以看出,在同样的浸蚀前提下,650℃保温60min敏化时组织的晶界腐化不明显.而800℃保温60min敏化时组织的晶界腐化比较明显.重要原因是在敏化温度区间(一般为500—900℃)较高温度时,晶界邻近的奥氏体中的铬元素更轻易以Cr23C6的情势沿晶界析出,造成了晶界邻近奥氏体中的铬元素削减,使得此处的电位下降,使得此处更轻易被腐化.当敏化温度不是很高,并且敏化保温时光不敷长时,Cr23C6析出并没有集合在晶界上,而以点蚀的情势疏散在晶粒里,是以金相照片中的晶粒上有着弥散的Cr23C6析出物.界腐化比较明显.重要原因是在敏化温度区间(一般为500—900℃)较高温度时,晶界邻近的奥氏体中的铬元素更轻易以Cr23C6的情势沿晶界析出,造成了晶界邻近奥氏体中的铬元素削减,使得此处的电位下降,使得此处更轻易被腐化.当敏化温度不是很高,并且敏化保温时光不敷长时,Cr23C6析出并没有集合在晶界上,而以点蚀的情势疏散在晶粒里,是以金相照片中的晶粒上有着弥散的Cr23C6析出物.
3结论
经由过程对304奥氏体不锈钢热处理工艺的研讨,得出了却论如下:
(1)固溶处理后的奥氏体不锈钢有更好的耐腐化机能,固溶后水冷比空冷获得的概况硬度更高,并且概况是残存压应力,对其他力学机能也有利.
(2)可以得出敏化后的奥氏体不锈钢十分轻易被腐化.并且,敏化温度越高,敏化时光越长,敏化后的晶间腐化偏向越大.是以,奥氏体不锈钢热处理时必定防止在敏化区间内进行.下载本文