视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
matlab与对应分析
2025-09-28 00:55:05 责编:小OO
文档
第九章对应分析

安庆师范学院    胡云峰

习题 用对应分析法,对我国16个地区农民1982年支出情况的6项指标进行分类。

16个地区农民生活水平的调查数据(单位:元)

地区食品衣着燃料住房生活用品及其他文化生活服务支出
x1x2x3x4 x5x6
北京190.3343.779.7360.5449.019.04
天津135.236.410.4744.1613.493.94
河北95.2122.839.322.4422.812.8
山西104.7825.116.49.18.173.25
内蒙128.4127.638.9412.5823.993.27
辽宁145.6832.8317.7927.2939.093.47
吉林159.3733.3818.3711.8125.295.22
黑龙江116.2229.5713.2413.7621.756.04
上海221.1138.12.53115.6550.825.
江苏144.9829.1211.6742.627.35.74
浙江169.9232.7512.7247.1234.355
安徽153.1123.0915.6223.5418.186.39
福建144.9221.2616.9619.5221.756.73
江西140.5421.517.19.1915.974.94
山东115.8430.2612.233.6133.773.85
河南101.1823.268.4620.220.54.3
解 第一步求出协方差矩阵A=Z’Z

程序:

x=[190.33 43.77 9.73 60.54 49.01 9.04;135.20 36.40 10.47 44.16 13.49 3.94;...

    95.21 22.83 9.30 22.44 22.81 2.80;104.78 25.11 6.40 9. 18.17 3.25;...

    128.41 27.63 8.94 12.58 23.99 3.27;145.68 32.83 17.79 27.29 39.09 3.47;...

    159.37 33.38 18.37 11.81 25.29 5.22;116.22 29.57 13.24 13.76 21.75 6.04;...

    221.11 38. 12.53 115.65 50.82 5.;144.98 29.12 11.67 42.60 27.30 5.74;...

    169.92 32.75 12.72 47.12 34.35 5.00;153.11 23.09 15.62 23.54 18.18 6.39;...

    144.92 21.26 16.96 19.52 21.75 6.73;140.54 21.5 17. 19.19 15.97 4.94;...

    115.84 30.26 12.20 33.61 33.77 3.85;101.18 23.26 8.46 20.2 20.5 4.3];

[n p]=size(x);

T=sum(sum(x));

xliehe=zeros(1,p);

xhanghe=zeros(1,n);

for k=1:p

    xliehe(k)=sum(x(:,k));

end

for l=1:n

    xhanghe(l)=sum(x(l,:));

end

Z=zeros(p,p);

for i=1:1:n

    for j=1:1:p

        Z(i,j)=(x(i,j)-xhanghe(i)*xliehe(j)/T)/((xhanghe(i)*xliehe(j))^(1/2));

    end

end

A=Z'*Z

输出结果

A =

    0.0042    0.0003    0.0032   -0.0090   -0.0026    0.0012

    0.0003    0.0034    0.0001   -0.0044    0.0004    0.0000

    0.0032    0.0001    0.0055   -0.0091   -0.0016    0.0010

   -0.0090   -0.0044   -0.0091    0.0284    0.0014   -0.0029

   -0.0026    0.0004   -0.0016    0.0014    0.0055   -0.0008

0.0012    0.0000    0.0010   -0.0029   -0.0008    0.0014

然后求A的特征值及特征向量

程序

[X B]=eig(A)

输出结果

X =

    0.7547   -0.3203    0.3733    0.0438    0.3135    0.2972

    0.3441    0.1587   -0.4490    0.7199   -0.3485    0.1227

    0.2253    0.1520   -0.7095   -0.5207    0.2386    0.3078

    0.3628    0.0685   -0.1587   -0.0255    0.2293   -0.8861

    0.3311   -0.0066    0.1281   -0.4555   -0.8120   -0.0850

    0.1417    0.91    0.3377   -0.0243    0.1071    0.0970

B =

    0.0000         0         0         0         0         0

         0    0.0010         0         0         0         0

         0         0    0.0016         0         0         0

         0         0         0    0.0033         0         0

         0         0         0         0    0.0069         0

         0         0         0         0         0    0.0357

(0.0357+0.0069)/(0.0357+0.0069+0.0033+0.0016+0.0010)*100%=87.83%

前两个方差的累计贡献率已达87%,因此,选前两个特征值分别计算R型与Q型的因子载荷阵如下

程序

F=zeros(p,2);

for t=1:1:p

    F(t,1)=(0.0357^0.5)*(X(t,6));

    F(t,2)=(0.0069^0.5)*(X(t,5));

end

F

G=Z*F

输出结果

F =

    0.0562    0.0260

    0.0232   -0.02

    0.0582    0.0198

   -0.1674    0.0191

   -0.0161   -0.0674

    0.0183    0.00

G =

   -0.0079   -0.0021

   -0.0054    0.0024

   -0.0001   -0.0013

    0.0075   -0.0011

    0.0080   -0.0012

    0.0035   -0.0024

    0.0128    0.0001

    0.0083   -0.0007

   -0.0246    0.0012

   -0.0044    0.0006

   -0.0042    0.0000

    0.0062    0.0027

    0.0077    0.0018

    0.0080    0.0028

   -0.0030   -0.0025

0.0018   -0.0007

最后我们在因子轴平面上左变量点和样品点

程序

h1=F(:,1);

g1=F(:,2);

h2=G(:,1);

g2=G(:,2);

plot(h1,g1,'o')

hold on

plot(h2,g2,'+')

legend('变量点','样品点');

输出结果下载本文

显示全文
专题