视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
高一物理相遇和追及问题含详解
2025-09-28 01:03:12 责编:小OO
文档
相遇和追及问题

【要点梳理】

要点一、机动车的行驶安全问题:

1、反应时间:人从发现情况到采取相应措施经过的时间为反应时间。

2、反应距离:在反应时间内机动车仍然以原来的速度v匀速行驶的距离。

3、刹车距离:从刹车开始,到机动车完全停下来,做匀减速运动所通过的距离。

4、停车距离与安全距离:反应距离和刹车距离之和为停车距离。停车距离的长短由反应距离和刹车距离共同决定。安全距离大于一定情况下的停车距离。

要点二、追及与相遇问题的概述

1、追及问题的两类情况

(1)速度小者追速度大者

(2)速度大者追速度小者

说明:

①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;

②x0是开始追及以前两物体之间的距离;

③t2-t0=t0-t1;

④v1是前面物体的速度,v2是后面物体的速度. 

特点归类:

(1)若后者能追上前者,则追上时,两者处于同一位置,后者的速度一定不小于前者的速度.

(2)若后者追不上前者,则当后者的速度与前者相等时,两者相距最近.

2、相遇问题的常见情况

(1) 同向运动的两物体的相遇问题,即追及问题.

(2) 相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.

解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.

【典型例题】

类型一、机动车的行驶安全问题

例1、为了安全,在高速公路上行驶的汽车之间应保持必要的距离。已知某高速公路的最高限速为v=120km/h。假设前方车辆突然停止运动,后面汽车的司机从眼睛发现这一情况,经过大脑反应,指挥手、脚操纵汽车刹车,到汽车真正开始减速,所经历的时间需要0.50s(即反应时间),刹车时汽车所受阻力是车重的0.40倍,为了避免发生追尾事故,在该高速公路上行驶的汽车之间至少应保留多大的距离?

 

【答案】156m

【解析】

匀减速过程的加速度大小为。匀速阶段的位移,

减速阶段的位移,所以两车至少相距。

【点评】刹车问题实际上是匀变速直线运动的有关规律在减速情况下的具体应用,要解决此类问题,首先要搞清楚在反应时间里汽车仍然做匀速直线;其次也要清楚汽车做减速运动,加速度为负值;最后要注意单位统一。

举一反三

【变式】酒后驾车严重威胁交通安全.其主要原因是饮酒会使人的反应时间(从发现情况到实施操作制动的时间)变长,造成制动距离(从发现情况到汽车停止的距离)变长,假定汽车以108 km/h的速度匀速行驶,刹车时汽车的加速度大小为8 m/s2,正常人的反应时间为0.5 s,饮酒人的反应时间为1.5 s,试问:

(1)驾驶员饮酒后的反制距离比正常时多几米?

(2)饮酒的驾驶员从发现情况到汽车停止需多少时间?

【答案】 (1)30 m (2)5.25 s

【解析】 (1)汽车匀速行驶v=108 km/h=30 m/s

正常情况下刹车与饮酒后刹车,从刹车到车停止这段时间的运动是一样的,设饮酒后的刹车距离比正常时多Δs,反应时间分别为则代入数据得

(2)饮酒的驾驶员从实施操作制动到汽车停止所用时间解得

所以饮酒的驾驶员从发现情况到汽车停止所需时间解得

类型二、追及问题一:速度小者追赶同向速度大者

例2、一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s2的加速度开始加速行驶,恰在这时一辆自行车以6m/s的速度匀速驶来,从后边超过汽车。试求:(1)汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?   

【答案】2s   6m

【解析】:

方法一:临界状态法

汽车在追击自行车的过程中,由于汽车的速度小于自行车的速度,汽车与自行车之间的距离越来越大;当汽车的速度大于自行车的速度以后,汽车与自行车之间的距离便开始缩小。很显然,当汽车的速度与自行车的速度相等时,两车之间的距离最大。设经时间t两车之间的距离最大。则

   ∴  

方法二:图象法

在同一个v-t图象中画出自行车和汽车的速度-时间图线,如图所示。其中Ⅰ表示自行车的速度图线,Ⅱ表示汽车的速度图线,自行车的位移等于图线Ⅰ与时间轴围成的矩形的面积,而汽车的位移则等于图线Ⅱ与时间轴围成的三角形的面积。两车之间的距离则等于图中矩形的面积与三角形面积的差,不难看出,当t=t0时矩形与三角形的面积之差最大。

    此时,, 

方法三:二次函数极值法

设经过时间t汽车和自行车之间的距离,则

 

当时两车之间的距离有最大值,且

【点评】(1)在解决追及相遇类问题时,要紧抓“一图三式”,即:过程示意图,时间关系式、速度关系式和位移关系式,另外还要注意最后对解的讨论分析.

 分析追及、相遇类问题时,要注意抓住题目中的关键字眼,充分挖掘题目中的隐含条件,如“刚好”、“恰好”、“最多”、“至少”等,往往对应一个临界状态,满足相应的临界条件.

 解题思路和方法

举一反三

【变式1】小轿车在十字路口等绿灯亮后,以1m/s2的加速度启动,恰在此时,一辆大卡车以7m/s的速度从旁超过,做同向匀速运动,问(1)小轿车追上大卡车时已通过多少路程?(2)两车间的距离最大时为多少?

【答案】98m  24.5m

【变式2】甲、乙两车同时从同一地点出发,向同一方向运动,其中甲以10 m/s的速度匀速行驶,乙以2 m/s2的加速度由静止启动,求:

 经多长时间乙车追上甲车?此时甲、乙两车速度有何关系?

 追上前经多长时间两者相距最远?此时二者的速度有何关系?

【答案】(1)10 s 2倍 (2)5 s 相等

【解析】(1)乙车追上甲车时,二者位移相同,设甲车位移为x1,乙车位移为x2,则x1=x2,即,解得,因此.

(2)设追上前二者之间的距离为,则 

由数学知识知:当时,两者相距最远,此时.

类型三、追及问题二:速度大者减速追赶同向速度小者

例3、火车以速度匀速行驶,司机发现前方同轨道上相距S处有另一列火车沿同方向以速度(对地、且)做匀速运动,司机立即以加速度紧急刹车,要使两车不相撞,应满足什么条件?

【答案】

【解析】方法一:设两车恰好相撞(或不相撞),所用时间为t,此时两车速度相等

 解之可得:即,当时,两车不会相撞。

方法二:要使两车不相撞,其位移关系应为: 

对任一时间t,不等式都成立的条件为由此得

【点评】分析解决两物体的追及、相遇类问题,应首先在理解题意的基础上,认清两物体在位移、速度、时间等方面的关联,必要时须画出运动关联的示意图。这类问题的特殊之处是常与极值条件或临界条件相联系。分析解决这类问题的方法有多种,无论哪一种方法,分析临界条件、解决相关的临界条件方程或用数学方法找出相关的临界值,是解决这类问题的关键和突破口。

举一反三

【变式1】汽车正以10m/s的速度在平直公路上前进,突然发现正前方s 处有一辆自行车以4m/s的速度做同方向的匀速直线运动,汽车立即关闭油门做匀减速运动,加速度大小为6m/s2,若汽车恰好不碰上自行车,则s大小为多少?

【答案】3m

【变式2】甲、乙两辆汽车在平直的公路上沿同一方向做直线运动,t=0时刻同时经过公路旁的同一个路标.在描述两车运动的v-t图中(如图),直线a、b分别描述了甲、乙两车在0~20 s的运动情况.关于两车之间的位置关系,下列说法正确的是(    )

A.在0~10 s内两车逐渐靠近     B.在10~20 s内两车逐渐远离

C.在5~15 s内两车的位移相等   D.在t=10 s时两车在公路上相遇

【答案】C

【解析】由题图知乙做匀减速运动,初速度v乙=10 m/s,加速度大小a乙=0.5 m/s2;甲做匀速直线运动,速度v甲=5 m/s.当t=10 s时v甲=v乙,甲、乙两车距离最大,所以0~10 s内两车越来越远,10~15 s内两车距离越来越小,t=20 s时,两车距离为零,再次相遇.故A、B、D错误.因5~15 s时间内v甲=乙,所以两车位移相等,故C正确.

类型四、相遇问题

例4、在某市区内,一辆小汽车在公路上以速度向东行驶,一位观光游客正由南向北从斑马线上横过马路。汽车司机发现游客途经D处时,经过0.7s作出反应紧急刹车,但仍将正步行至B处的游客撞伤,该汽车最终在C处停下,如图所示。为了判断汽车司机是否超速行驶以及游客横穿马路的速度是否过快,警方派一车胎磨损情况与肇事汽车相当的警车以法定最高速度行驶在同一马路的同一地段,在肇事汽车的起始制动点A紧急刹车,经14.0m后停下来。在事故现场测得=17.5m,=14.0m,=2.6m.肇事汽车的刹车性能良好,问:(1)该肇事汽车的初速度是多大?       (2)游客横过马路的速度是多大?

【答案】21m/s     1.53 m/s

【解析】(1)警车和肇事汽车刹车后均做匀减速运动,其加速度大小,

与车子的质量无关,可将警车和肇事汽车做匀减速运动的加速度a的大小视作相等。

对警车,有;对肇事汽车,有,则

  ,即,故=21m/s。

(2)对肇事汽车,由得,

故肇事汽车至出事点B的速度为=14.0m/s。

肇事汽车从刹车点到出事点的时间=1s,

又司机的反应时间t0=0.7s,故游客横过马路的速度m/s≈1.53m/s。

【点评】研究物体的运动,首先要分析清楚物体的运动过程。特别是当物体有多个运动阶段时,必须明确问题所研究的是运动的哪一个阶段。当问题涉及多个物体的运动时,应先分别研究各个物体的运动,然后找出它们之间的联系。

举一反三

【变式1】羚羊从静止开始奔跑,经过50m的距离能加速到最大速度25m/s,并能维持一段较长的时间。猎豹从静止开始奔跑,经过60m的距离能加速到最大速度30m/s,以后只能维持这速度4.0s。设猎豹距离羚羊x时开始攻击,羚羊则在猎豹开始攻击后1.0s才开始奔跑,假定羚羊和猎豹在加速阶段做匀加速运动,且均沿同一直线奔跑,求:

(1)猎豹要在从最大速度减速前追到羚羊,x值应在什么范围?

(2)猎豹要在其加速阶段追到羚羊,x值应在什么范围?

【答案】(1) 31.875m≤ x ≤ 55m (2)x ≤ 31.875m 

【变式2】一辆值勤的警车停在公路边,当警员发现从他旁边以10 m/s的速度匀速行驶的货车严重超载时,决定前去追赶,经过5.5 s后警车发动起来,并以2.5 m/s2的加速度做匀加速运动,但警车的行驶速度必须控制在90 km/h以内.问:

(1)警车在追赶货车的过程中,两车间的最大距离是多少?

(2)警车发动后要多长时间才能追上货车?

【答案】(1)75 m (2)12 s

【变式3】甲乙两车在一平直道路上同向运动,其v-t图象如图所示,图中△OPQ和△OQT的面积分别为s1和s2(s2>s1).初始时,甲车在乙车前方s0处(    )

A.若s0=s1+s2,两车不会相遇          B.若s0C.若s0=s1,两车相遇1次            D.若s0=s2,两车相遇1次

【答案】ABC

【解析】在T时刻,甲、乙两车速度相等,甲车的位移s2,乙车的位移s1+s2,当甲车在前方s0=s1+s2时,T时刻乙车在甲车的后方s2处,此后乙车速度就比甲车小,不能与甲车相遇,A正确;如果s0=s1,说明T时刻乙车刚好赶上甲车,但由于速率将小于甲车,与甲车不会相遇第二次,C正确;如果s0【巩固练习】

解答题:

1、在十字路口,汽车以的加速度从停车线启动做匀加速运动,恰好有一辆自行车以的速度匀速驶过停车线与汽车同方向行驶,求:①什么时候它们相距最远?最远距离是多少?②在什么地方汽车追上自行车?追到时汽车的速度是多大?

2、甲、乙两个同学在直跑道上练习4100m接力,他们在奔跑时有相同的最大速度。乙从静止开始全力奔跑需跑出25m才能达到最大速度,这一过程可看作匀变速运动。现甲持棒以最大速度向乙奔来,乙在接力区伺机全力奔出。若要求乙接棒时奔跑达到最大速度的80%,则:(1)乙在接力区须奔出多大距离?(2)乙应在距离甲多远时起跑?

3、甲、乙两车相距为s,同时同向运动,乙在前面做加速度为a1、初速度为零的匀加速运动,甲在后面做加速度为a2、初速度为v0的匀加速运动,试讨论两车在运动过程中相遇次数与加速度的关系。

4、在水平直轨道上有两列火车A和B相距s。A车在后面做初速度为v0、加速度大小为2a的匀减速直线运动;而B车同时做初速度为0、加速度大小为a的匀加速直线运动,两车运动方向相同。要使两车不相撞,求A车的初速度v0应满足的条件。

5、甲、乙两车在同一条平直公路上行驶,甲车以v1=10m/s的速度做匀速运动,经过车站A时关闭油门以a1=4m/s2的加速度匀减速前进。2s后乙车与甲车同方向以a2=1m/s2的加速度从同一车站A出发,由静止开始做匀加速直线运动。问乙车出发后经多长时间追上甲车?

6、高速公路给人们出行带来了方便,但是因为在高速公路上行驶的车辆的速度大,雾天往往出现十几辆车追尾连续相撞的车祸。已知轿车在高速公路正常行驶速率为120km/h。轿车刹车产生的最大加速度为8m/s2,如果某天有雾,能见度(观察者与能看见的最远目标间的距离)约为37m,设司机的反应时间为0.6s,为安全行驶,轿车行驶的最大速度是多少?

7、小球1从高H处自由落下,同时小球2从其下方以速度v0竖直上抛,两球可在空中相遇,试就下列两种情况讨论v0的取值范围。(1)在小球2上升过程两球在空中相遇;(2)在小球2下降过程两球在空中相遇。

8、如图所示,AB、CO为互相垂直的丁字形公路,CB为一斜直小路,CB与CO成60°角,CO间距300m。一逃犯骑着摩托车以45km/h的速度正沿AB公路逃窜。当逃犯途径路口O处时,守候在C处的干警立即以1.2m/s2的加速度启动警车,警车所能达到的最大速度为120km/h。①若干警沿COB路径追捕逃犯,则经过多长时间在何处能将逃犯截获?②若干警抄CB近路到达B处时,逃犯又以原速率掉头向相反方向逃窜,干警则继续沿BA方向追赶,则总共经多长时间在何处能将逃犯截获?(不考虑摩托车和警车转向的时间)

【答案与解析】

解答题:

1、10s   25m   100m   10m/s

解析:两车速度相等时相距最远,设所用时间为t

      ,,最远距离

设汽车追上自行车所用时间为t/,此时,, 

  此时距停车线距离,,此时汽车速度, 

2、16m     24m

解析: (1)设两人奔跑的最大速度为v0,则在乙从静止开始全力奔跑达到最大速度的过程,以及乙接棒时奔跑达到最大速度的80%的过程,分别应用匀变速直线运动速度—位移关系式,有          ,

由以上两式可解得乙在接力区须奔出的距离,。

   (2)设乙在距甲为x0处开始起跑,到乙接棒时跑过的距离为,所经历的时间为t,则甲、乙两人在时间t内通过的位移有如下关系:,又由平均速度求位移的公式可知乙的位移,

从而由以上两式可解得

3、答案见解析。

解析 : 这里提供两种解法。

解法一(物理方法):

由于两车同时同向运动,故有

    (1)当2时,,可得两车在运动过程中始终有。由于原来甲车在后,乙车在前,所以甲、乙两车的距离在不断缩短,经过一段时间后甲车必然追上乙车。由于甲车追上乙车时,所以甲超过乙后相距越来越大,因此甲、乙两车只能相遇一次。

(2)当时,,因此甲、乙两车也只能相遇一次。

     (3)当时,,的大小关系会随着运动时间的增大而发生变化。刚开始a1t和a2t相差不大且甲有初速度v0,所以。随着时间的推移,a1t和a2t相差越来越大,当时,,接下来,则有。

若在之前,甲车还没有超过乙车,随后由于,甲车就没有机会超过乙车,即两车不相遇;

若在时,两车刚好相遇,随后由于,甲车又要落后乙车,这样两车只能相遇一次;

若在之前,甲车已超过乙车,即已相遇一次,随后由于,甲、乙距离又缩短,直到乙车反超甲车时,再相遇一次,则两车能相遇两次。

解法二(数学方法): 

设经过时间t两车能够相遇,由于,,,

相遇时有,则,所以。

(1)当时,t只有一个解,则相遇一次。

(2)当时,,所以。t只有一个解,则相遇一次。(3)当时,若,t无解,即不相遇;

 若,t只有一个解,即相遇一次;

 若,t有两个正解,即相遇两次。

4、

解析: 要使两车不相撞,A车追上B车时其速度最多只能与B车速度相等。设A、B两从相距s到A车追上B车时,A车的位移为xA,末速度为vA,所用时间为t;B车的位移为xB,末速度为vB,运动过程如图所示。 

现用四种方法求解。

解法一(利用位移公式和速度公式求解):

对A车有,。对B车有,。

两车有,追上时,两车刚好不相撞的条件是  ,

由以上各式联立解得。

故要使两车不相撞,A车的初速度v0应满足的条件是, 

解法二(利用速度公式和速度—位移关系式求解):

两车刚好不相撞的临界条件是:即将追上时两车速度相等。设此速度为v,A车追上B车前,A车运动的时间为,B车运动的时间为,

因为,所以,即。①A车的位移, 

B车的位移,因为,所以。即②

①②两式联立解得。

故要使两车不相撞,A车的初速度v0应满足的条件是,。

解法三(利用判别式解):

由解法一可知,即,整理得。

这是一个关于时间t的一元二次方程,当根的判别式<0时,t无实数解,即两车不相撞。

故要使两车不相撞,A车的初速度v0应满足的条件是,。

解法四(用速度图象解):

如图所示,先作A、B两车的速度图象。

设经过时间t两车刚好不相撞,则对A车有,

对B车有,由以上两式联立解得。

经时间t两车的位移之差,即为原来两车间的距离s,它可用速度图象中阴影部分的面积表示,由速度图象可知。故要使两车不相撞,A车的初速度v0应满足的条件是。

5、5s

解析 : 这里提供两种解法。

解法一(公式法):

甲、乙两车自同一地点于不同时刻开始运动,乙车出发时甲车具有的速度为

m/sm/s=2 m/s,

此时离甲车停止运动的时间s=0.5s。

根据题设条件,乙车在0.5s内追不上甲车,也就是说乙车追上甲车时,甲车已经停止了运动。

甲车停止时离车站A的距离m=12.5m,

设乙走完这段路程所需的时间为t,由得s=5s。

故乙车出发后经过5s追上甲车。

解法二(图象法):

甲、乙两车运动的速度图象如图所示。

乙车追上甲车的条件是它们离开车站A的距离相等,即图线和时间轴所围的面积相等,加速度可用直线的斜率表示。由图象可得,t=5s。

故乙车出发后经过5s追上甲车。

6、

解析:由题设知,轿车在司机发现目标到开始刹车的反应时间里做匀速直线运动,刹车后开始减速运动直至停下来。设轿车的最大速度为v 

在反应时间内轿车行驶距离,刹车后至停下来轿车行驶距离 

要保证轿车行驶安全必要求:即  ,代入数值可解得: 

7、    

解析:两球相遇,则小球1下落的高度h1与小球2上升的高度h2的算术和等于H,即: 

   

(1)小球2上升过程所用时间为:,在小球2上升过程中两球相遇,应有:t≤t上

即:、得: 

(2)小球2从抛出到落回原地所用时间为:,在小球2下降过程中两球相遇,应有:t上<t<T,    即: 

8、624m   444.6m

解析:(1)摩托车的速度,警车的最大速度   。

   警车达最大速度的时间,行驶的距离。

   在t1时间内摩托车行驶的距离,。

 因为,故警车在t1时间内尚未追上摩托车,相隔距离。

   设需再经时间t2,警车才能追上摩托车,则。

   从而,截获逃犯总共所需时间, 截获处在OB方向距O处距离为。

   (2)由几何关系可知,=600m,因<,故警车抄CB近路达最大速度时尚未到达B点。设再经过时间到达B点,则≈4.11s。

   在()时间内摩托车行驶的距离=478.35m,

此时摩托车距B点≈41.27m。

   此后逃犯掉头向相反方向逃窜.设需再经时间警车才能追上逃犯,则≈2.25s。

   从而,截获逃犯总共所需时间≈34.1s。

截获处在OB间距O处=444.6m。下载本文

显示全文
专题