视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
专题08 几何图形初步解答题压轴训练(原卷版)-2020-2021学年七年级数学...
2025-09-27 23:25:00 责编:小OO
文档
专题08  几何图形初步解答题压轴训练(原卷版)

解答题(共15小题)

1.已知点C在线段AB上,AC=2BC,点D、E在直线AB上,点D在点E的左侧.

(1)若AB=18,DE=8,线段DE在线段AB上移动.

①如图1,当E为BC中点时,求AD的长;

②点F(异于A,B,C点)在线段AB上,AF=3AD,CE+EF=3,求AD的长;

(2)若AB=2DE,线段DE在直线AB上移动,且满足关系式=,则=     .

2.如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.

(1)求线段MN的长度;

(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;

(3)动点P、Q分别从A、B同时出发,点P以2cm/s的速度沿AB向右运动,终点为B,点Q以1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?

3.如图①,点O为直线AB上一点,过点O作射线OC,将一直角三角板如图摆放(∠MON=90°).

(1)将图①中的三角板绕点O旋转一定的角度得图②,使边OM恰好平分∠BOC,问:ON是否平分∠AOC?请说明理由;

(2)将图①中的三角板绕点O旋转一定的角度得图③,使边ON在∠BOC的内部,如果∠BOC=60°,则∠BOM与∠NOC之间存在怎样的数量关系?请说明理由.

4.如图,以∠AOB的顶点O为端点画一条射线OC,OM,ON分别是∠AOC和∠BOC的角平分线.

(1)如图①,若∠AOC=50°,∠BOC=30°,则∠MON的度数是     ;

(2)如图②,若∠AOB=100°,∠BOC=30°,则∠MON的度数是     ;

(3)根据以上解答过程,完成下列探究:

探究一:如图③,当射线OC位于∠AOB内部时,请写出∠AOB与∠MON的数量关系,并证明你的结论;

探究二:如图④,当射线OC位于∠AOB外部时,请写出∠AOB与∠MON的数量关系,并证明你的结论.

5.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.

【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).

【综合运用】

(1)填空:

①A、B两点间的距离AB=     ,线段AB的中点表示的数为     ;

②用含t的代数式表示:t秒后,点P表示的数为     ;点Q表示的数为     .

(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;

(3)求当t为何值时,PQ=AB;

(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.

6.如图,直线EF与MN相交于点O,∠MOE=30°,将一直角三角尺的直角顶点与O重合,直角边OA与MN重合,OB在∠NOE内部.操作:将三角尺绕点O以每秒3°的速度沿顺指针方向旋转一周,设运动时间为t(s).

(1)当t为何值时,直角边OB恰好平分∠NOE?此时OA是否平分∠MOE?请说明理由;

(2)若在三角尺转动的同时,直线EF也绕点O以每秒9°的速度顺时针方向旋转一周,当一方先完成旋转一周时,另一方同时停止转动.

①当t为何值时,EF平分∠AOB?

②EF能否平分∠NOB?若能请直接写出t的值;若不能,请说明理由.

7.(1)如图,已知点C在线段AB上,且AC=6cm,BC=4cm,点M、N分别是AC、BC的中点,求线段MN的长度;

(2)若点C是线段AB上任意一点,且AC=a,BC=b,点M、N分别是AC、BC的中点,请直接写出线段MN的长度;(用a、b的代数式表示)

(3)在(2)中,把点C是线段AB上任意一点改为:点C是直线AB上任意一点,其他条件不变,则线段MN的长度会变化吗?若有变化,求出结果.

8.作图题

如图,点C,E均在直线AB上,∠BCD=45°.

(1)在图中作∠FEB,使∠BEF=∠DCB(保留作图痕迹,不写作法).

(2)请直接说出直线EF与直线CD的位置关系.

9.【新知理解】

如图①,点C在线段AB上,图有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.

(1)线段的中点     这条线段的“巧点”;(填“是”或“不是”).

(2)若AB=12cm,点C是线段AB的巧点,则AC=     cm;

【解决问题】

(3)如图②,已知AB=12cm.动点P从点A出发,以2cm/s的速度沿AB向点B匀速移动:点Q从点B出发,以1cm/s的速度沿BA向点A匀速移动,点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s).当t为何值时,A、P、Q三点中其中一点恰好是另外两点为端点的线段的巧点?说明理由

10.如图是一个长为4cm,宽为3cm的长方形纸片

(1)若将此长方形纸片绕长边或短边所在直线旋转一周,能形成的几何体是     ,这能说明的事实是     .

(2)求:当此长方形纸片绕长边所在直线旋转一周时(如图1),所形成的几何体的体积.

(3)求:当此长方形纸片绕短边所在直线旋转一周时(如图2),所形成的几何体的体积.

11.阅读解答过程,回答问题:

如图,OC在∠AOB内,∠AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度数.

解:过O作射线OM,使点M,O,A在同一直线上,因为∠MOD+∠BOD=90°,∠BOC+∠BOD=90°,所以∠BOC=∠MOD,所以∠AOD=180°﹣∠MOD=180°﹣∠BOC=180°﹣30°=150°.

(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?

(2)如果∠AOB=∠DOC=x°,∠AOD=y°,求∠BOC的度数.

12.已知将一副三角板(直角三角板OAB和直角板OCD,∠AOB=90°,∠ABO=45°,∠CDO=90°,∠COD=30°)

(1)如图1摆放,点O、A、C在一条直线上,∠BOD的度数是     ;

(2)如图2,变化摆放位置将直角三角板COD绕点O逆时针方向转动,若要OB恰好平分∠COD,则∠AOC的度数是     ;

(3)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC.射线ON平分∠BOD,如果三角板OCD在∠AOB内绕点O任意转动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由.

13.知识是用来为人类服务的,我们应该把它们用于有意义的方面.下面就两个情景请你作出评判.

情景一:从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题.

情景二:A、B是河流l两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P的位置,并说明你的理由:

你赞同以上哪种做法?你认为应用数学知识为人类服务时应注意什么?

14.已知∠AOD=40°,射线OC从OD出发,绕点O以20°/秒的速度逆时针旋转,旋转时间为t秒(t≤7).射线OE、OF分别平分∠AOC、∠AOD.

(1)如图①,如果t=4秒,求∠EOA的度数;

(2)如图①,若射线OC旋转时间为t秒,求∠EOF的度数(用含t的代数式表示);

(3)射线OC从OD出发时,射线OB也同时从OA出发,绕点O以10°/秒的速度逆时针旋转,射线OC、OB在旋转过程中(t≤7),若∠BOD=∠EOB,请你借助图②和备用图进行分析后,直接写出的值.

15.如图,∠AOB=20°,∠AOE=110°,OB平分∠AOC,OD平分∠AOE.

(1)求∠COD的度数;

(2)若以点O为观察中心,OA为正东方向,求射线OD的方位角;

(3)若∠AOE的两边OA,OE分别以每秒5°和每秒3°的速度,同时绕点O按逆时针方向旋转,当OA回到原处时,OA,OE停止运动,则经过多少秒时,∠AOE=30°?下载本文

显示全文
专题