一、最值 已知椭圆C:()的离心率为,短轴一个端点到右焦点的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线与椭圆C交于A、B两点,坐标原点O到直线的距离为,求△AOB面积的最大值.
二、定值(定点) 已知椭圆C的中心在坐标原点,焦点在轴上,椭圆C上的点到焦点距离的最大值为3;最小值为1;(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线过定点,并求出该定点的坐标.
三、存在性 已知椭圆的离心率为,过右焦点F的直线与相交于、两点,当的斜率为1时,坐标原点到的距离为.(I)求,的值;(II)上是否存在点P,使得当绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与的方程;若不存在,说明理由.
四、取值范围 已知椭圆过点,且离心率.(Ⅰ)求椭圆方程;
(Ⅱ)若直线与椭圆交于不同的两点、,且线段的垂直平分线过定点,求的取值范围.下载本文