视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
福建省三明市2012年中考数学试题
2025-09-28 02:05:25 责编:小OO
文档
2012年三明市初中毕业暨高级中等学校招生统一考试

数  学  试  题

(满分:150分  考试时间:120分钟)

友情提示:

1.作图或画辅助线等需用签字笔描黑.

2.未注明精确度的计算问题,结果应为准确数.

3.抛物线()的顶点坐标为,对称轴.

一、选择题(共10小题,每小题4分,满分40分.每小题只有一个正确选项,请在答题卡

的相应位置填涂)

1. 在-2,-,0,2四个数中,最大的数是( ▲ )

A. -2           B. -         C. 0            D. 2

2.据《2011年三明市国民经济和社会发展统计公报》数据显示,截止2011年末三明市

常住人口约为2 510 000人,2 510 000用科学记数法表示为(▲)

A.       B.   

C.      D. 

3.如图,AB//CD,∠CDE=,则∠A的度数为(▲)

A.         B.     C.    D.

4.分式方程的解是(▲) 

A.        B.    C.       D.

5.右图是一个由相同小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置上的小正方体的个数,则这个几何体的左视图是(▲)

 

6.一个多边形的内角和是,则这个多边形的边数为(▲)

    A.4             B.5           C.6             D.7

7.下列计算错误的是(▲)

A.     B.  C.    D.

8.如图,AB是⊙O的切线,切点为A,OA=1,∠AOB=,则图

中阴影部分的面积是(▲)

A.          B.

C.         D.

9.在一个不透明的盒子里有3个分别标有数字5,6,7的小球,它们

除数字外其他均相同.充分摇匀后,先摸出1个球不放回,再摸出

1个球,那么这两个球上的数字之和为奇数的概率为(▲) 

    A.     B.    C.    D.

10.如图,在平面直角坐标系中,点A在第一象限,点P在轴上,

若以P,O,A为顶点的三角形是等腰三角形,则满足条件的

点P共有(▲)

A. 2个      B. 3个    C.4个    D.5个

二、填空题(共6小题,每小题4分,满分24分.请将答案填在答题卡的相应位置)

11.分解因式:=  ▲  .

12.如图,在△ABC中,D,E分别是边AB,AC的中点,

若BC=6,则DE=  ▲  .

13.某校九(1)班6位同学参加跳绳测试,他们的成绩

(单位:次/分钟)分别为:173,160,168,166,175,

168.这组数据的众数是  ▲  .

14.如图,在△ABC中,D是BC边上的中点,∠BDE=∠CDF,

请你添加一个条件,使DE=DF成立.你添加的条件是  ▲  .

(不再添加辅助线和字母)

15.如图,点A在双曲线上,点B在双曲线

上,且AB//轴,点P是轴上的任意一点,

则△PAB的面积为  ▲  . 

16.填在下列各图形中的三个数之间都有相同的规律,根据此规律,

a的值是  ▲  .

三、解答题(共7题,满分86分.请将解答过程写在答题卡的相应位置)

17. (本题满分14分)

(1)计算:;(7分)

(2)化简:.(7分)

18. (本题满分16分)

(1)解不等式组 并把解集在数轴上表示出来;(8分) 

(2)如图,已知△ABC三个顶点的坐标分别为A(-2,-1),B(-3,-3),

C(-1,-3).

①画出△ABC关于轴对称的△,并写出点的坐标;(4分)

②画出△ABC关于原点O对称的△,并写出点的坐标.(4分)

19. (本题满分10分)

为了解某县2012年初中毕业生数学质量检测成绩等级的分布情况,随机抽取了该县若干名初中毕业生的数学质量检测成绩,按A,B,C,D四个等级进行统计分析,并绘制了如下尚不完整的统计图:

请根据以上统计图提供的信息,解答下列问题:

(1)本次抽取的学生有___▲  名;(2分)

(2)补全条形统计图;(2分)

(3)在抽取的学生中C级人数所占的百分比是__▲  ;(2分)

(4)根据抽样调查结果,请你估计2012年该县1430名初中毕业生数学质量检测成绩为A级的人数.(4分)

20.(本题满分10分)

   某商店销售A,B两种商品,已知销售一件A种商品可获利润10元,销售一件B种商品可获利润15元.

(1)该商店销售A,B两种商品共100件,获利润1350元,则A,B两种商品各销售多少件?(5分)

(2)根据市场需求,该商店准备购进A,B两种商品共200件,其中B种商品的件数

不多于A种商品件数的3倍.为了获得最大利润,应购进A,B两种商品各多少件?可获得最大利润为多少元?(5分)

21. (本题满分10分)

如图,在△ABC中,点O在AB上,以O为圆心的圆

经过A,C两点,交AB于点D,已知∠A=,∠B=,

且2+=.

   (1)求证:BC是⊙O的切线;(5分)

(2)若OA=6,,求BC的长.(5分)

22.(本题满分12分)

已知直线与轴和轴分别交于点A和点B,抛物线的顶点M在直线AB上,且抛物线与直线AB的另一个交点为N.

(1)如图①,当点M与点A重合时,求:

①抛物线的解析式;(4分)

②点N的坐标和线段MN的长;(4分)

(2)抛物线在直线AB上平移,是否存在点M,使得△OMN与△AOB相似?若存在,直接写出点M的坐标;若不存在,请说明理由.(4分)

23.(本题满分14分)

在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),

∠BPE=∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.

(1) 当点P与点C重合时(如图①).求证:△BOG≌△POE;(4分)

(2)通过观察、测量、猜想:=  ▲  ,并结合图②证明你的猜想;(5分)

(3)把正方形ABCD改为菱形,其他条件不变(如图③),若∠ACB=,

求的值.(用含的式子表示)(5分) 

2012年三明市初中毕业暨高级中等学校招生统一考试

数学试卷参及评分标准

说明:以下各题除本参考的解法外,其他解法参照本评分标准,按相应给分点评分.

一、选择题(每小题4分,共40分)

1. D   2. C   3. D   4. A   5. B  6. C  7. B   8. C  9. A   10. C

二、填空题(每小题4分,共24分)

11.    12. 3   13. 168   14. 答案不唯一;如:AB=AC;或∠B=∠C;

或∠BED=∠CFD;或∠AED=∠AFD等;15. 1  16. 900

三、解答题(共86分)

17.(1)解:原式=                                    ……………6分

          =1.                                          ……………7分

(2)解法一:原式=                ……………2分

          =                               ……………6分

          =.                                      ……………7分                   

解法二:原式=              ……………4分

            =                              ……………6分

            =.                                        ……………7分   

18.解:(1)解不等式①,得 ,                             ……………2分

解不等式②,得 -2.                              ……………4分

            不等式①,②的解集在数轴上表示如下:

                                                            ……………6分

            所以原不等式组的解集为.                  ……………8分

(2)①如图所示,;

画图正确3分,坐标写对1分;

②如图所示,. 

画图正确3分,坐标写对1分;

19.解:(1)100;                 …………2分

(2)如图所示;            …………4分

       (3)30%;                 …………6分

       (4)1430×20%=286(人)   …………9分

    答:成绩为A级的学生人数约为286人.…10分

20.解:(1)解法一:设A种商品销售x 件,

则B种商品销售(100- x)件.           ……………1分

            依题意,得                 ……………3分

            解得x=30.∴ 100- x =70.                    ……………4分

            答:A种商品销售30件,B种商品销售70件.      ……………5分

           解法二:设A种商品销售x 件, B种商品销售y件.       ……1分

           依题意,得                      ……………3分

           解得                                   ……………4分

           答:A种商品销售30件,B种商品销售70件.        ……………5分

(2)设A种商品购进x 件,则B种商品购进(200- x)件.    ………6分

依题意,得0≤ 200- x ≤3x

解得 50≤x≤200                               ……………7分

  设所获利润为w元,则有

w=10x+15(200- x)= - 5x +3000                 ……………8分

∵- 5<0,∴w随x的增大而减小.             

∴当x=50时,所获利润最大

=2750元.                   ……………9分

             200- x=150.

          答:应购进A种商品50件,B种商品150件,

可获得最大利润为2750元.                   ……………10分

21.(1)证明:证法一:连接OC(如图①),∴∠BOC =2∠A=2,       ……2分

∴∠BOC+∠B=2+=90.∴∠BCO=90.即OC⊥BC.     ……4分

∴BC是的⊙O切线.                                     ……5分

证法二:连接OC(如图①), ∵ OA=OC ,            .         

    ∴∠ACO =∠A =.                       ……1分

    ∵ ∠BOC =∠A+∠ACO=2,              ……2分

   ∴∠BOC+∠B=2+=90.                ……3分

    ∴∠BCO=90.即OC⊥BC.                ……4分 

∴BC是的⊙O切线.                ……5分

证法三:连接OC(如图①),

∵OA=OC,∴∠OCA=∠A=.              ……1分

在△ACB中,

∠ACB=-(∠A+∠B)=-(+)

∴∠BCO=∠ACB-∠ACO =-(+)-

           =-(2+).               ……3分

∵2+=90,∴∠BCO.即OC⊥BC. ……4分

∴BC是⊙O的切线.                       ……5分

证法四:连接OC,延长BC(如图②),

∴∠ACE=∠A+∠B=+.                  …… 1分

又∵OA=OC,∴∠OCA=∠A=.              …… 2分

∴∠OCE=∠OCA+∠ACE=++=2+=.     … 4分

即OC⊥BC.∴BC是⊙O的切线.                     … 5分

证法五:过点A作AE⊥BC,交BC的延长线于点E,连接OC(如图③),

在△AEB中,∠EAB+∠B=90.               …… 1分

∵∠CAB=,∠B=,且 2+=90,

∴∠EAB=2.∴∠EAC=∠CAB=.              …… 2分

∵OC=OA,

∴∠OAC=∠OCA=,∠EAC=∠OCA.           …… 3分

∴OC//AE. ∴OC⊥BC.                      …… 4分

∴BC是⊙O的切线.                           …… 5分

(2)∵OC=OA =6,由(1)知,OC⊥BC,在△BOC中,

=,∵=,∴=.         …… 8分

∴OB=10.                                   …… 9分

∴BC===8.         …… 10分

22.(1)解:①∵直线与轴和 轴交于点A和点B,

∴,.                             ……1分

解法一:当顶点M与点A重合时,∴.               ……2分

∴抛物线的解析式是:.即.   ……4分

解法二:当顶点M与点A重合时,∴.               ……2分

∵ ,   ∴. 

又∵,∴.                ……3分

∴抛物线的解析式是:.                 ……4分

②∵N在直线上,设,又N在抛物线上,

∴.                 ……5分

解得   ,  (舍去)

∴.                             ……6分

过N作NC⊥轴,垂足为C(如图①).

∵,∴.

∴. .   ……7分

∴.    ……8分

(2)存在.

                     ………………10分

    .                     ………………12分

23.(1)证明:∵四边形ABCD是正方形,P与C重合,

∴OB=OP , ∠BOC=∠BOG=90°.        ……2分

∵PF⊥BG ,∠PFB=90°,

∴∠GBO=90°—∠BGO,∠EPO=90°—∠BGO,

∴∠GBO=∠EPO .                      ……3分

∴△BOG≌△POE.                      ……4分

(2).                          ……5分

证明:如图②,过P作PM//AC交BG于M,交BO于N,

∴∠PNE=∠BOC=90°, ∠BPN=∠OCB.

∵∠OBC=∠OCB =,  ∴ ∠NBP=∠NPB.

∴NB=NP.

∵∠MBN=90°—∠BMN,  ∠NPE=90°—∠BMN,

∴∠MBN=∠NPE.                                            ……6分

∴△BMN≌△PEN.                                           ……7分

∴BM=PE.∵∠BPE=∠ACB,  ∠BPN=∠ACB,

∴∠BPF=∠MPF.

∵PF⊥BM,∴∠BFP=∠MFP=. 又PF=PF, 

∴△BPF≌△MPF.                                            ……8分

∴BF=MF . 即BF=BM.∴BF=PE .  即.           ……9分

(3)解法一:如图③,过P作PM//AC交BG于点M,交BO于点N,

∴∠BPN=∠ACB=,∠PNE=∠BOC=90°.                   ……10分

由(2)同理可得BF=BM, ∠MBN=∠EPN.                 ……11分

∵∠BNM=∠PNE=90°,

∴△BMN∽△PEN.                      ……12分

∴.                          ……13分

在△BNP中,,        

∴.即.

∴.                       ……14分

解法二:如图③,过P作PM//AC交BG于点M,交BO于点N,

∴BO⊥PM,∠BPN=∠ACB=.         ……10分

∵∠BPE=∠ACB=,PF⊥BM,

∴∠EPN=. ∠MBN=∠EPN=∠BPE=.                           

设,

在△PFB中,  ,           ……11分

∵PF=PE+EF=,∴             ……12分

在△BFE中,, ∴.

∴.   .

.                           ……13分

∴  .    即.         ……14分

解法三:如图③,过P作PM//AC交BG于点M,交BO于点N,

∴  ∠BNP=∠BOC=90°.

∴  ∠EPN+∠NEP=90°.

又∵BF⊥PE,∴ ∠FBE+∠BEF=90°.

∵∠BEF=∠NEP,∴ ∠FBE=∠EPN.                …… 10分

∵PN//AC,∴∠BPN=∠BCA=.

又∵∠BPE=∠ACB=,∴∠NPE=∠BPE=.

∴∠FBE=∠BPE=∠EPN=.

∵ ,∴ .                 …… 11分

∵ ,∴ .          …… 12分

∵ ,∴ .              …… 13分

∴ .  ∴ .

∴ .                              …… 14分下载本文

显示全文
专题