视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
施密特触发器原理
2025-09-28 02:13:31 责编:小OO
文档
我们知道,门电路有一个阈值电压,当输入电压从低电平上升到阈值电压或从高电平下降到阈值电压时电路的状态将发生变化。施密特触发器是一种特殊的门电路,与普通的门电路不同,施密特触发器有两个阈值电压,分别称为正向阈值电压和负向阈值电压。在输入信号从低电平上升到高电平的过程中使电路状态发生变化的输入电压称为正向阈值电压(),在输入信号从高电平下降到低电平的过程中使电路状态发生变化的输入电压称为负向阈值电压()。正向阈值电压与负向阈值电压之差称为回差电压()。普通门电路的电压传输特性曲线是单调的,施密特触发器的电压传输特性曲线则是滞回的[图6.2.2(a)(b)]。

图6.2.1 用CMOS反相器构成的施密特触发器

(a)电路 (b)图形符号

图6.2.2 图6.2.1电路的电压传输特性

(a)同相输出 (b)反相输出

用普通的门电路可以构成施密特触发器[图6.2.1]。因为CMOS门的输入电阻很高,所以的输入端可以近似的看成开路。把叠加原理应用到和构成的串联电路上,我们可以推导出这个电路的正向阈值电压和负向阈值电压。当时,。当从0逐渐上升到时,从0上升到,电路的状态将发生变化。我们考虑电路状态即将发生变化那一时刻的情况。因为此时电路状态尚未发生变化,所以仍然为0,,于是,。与此类似,当时,。当从逐渐下降到时,从下降到,电路的状态将发生变化。我们考虑电路状态即将发生变化那一时刻的情况。因为此时电路状态尚未发生变化,所以仍然为,,于是,。通过调节或,可以调节正向阈值电压和反向阈值电压。不过,这个电路有一个约束条件,就是。如果,那么,我们有及,这说明,即使上升到或下降到0,电路的状态也不会发生变化,电路处于“自锁状态”,不能正常工作。

图6.2.4 带与非功能的TTL集成施密特触发器

集成施密特触发器比普通门电路稍微复杂一些。我们知道,普通门电路由输入级、中间级和输出级组成。如果在输入级和中间级之间插入一个施密特电路就可以构成施密特触发器[图6.2.4]。集成施密特触发器的正向阈值电压和反向阈值电压都是固定的。

利用施密特触发器可以将非矩形波变换成矩形波[图6.2.8]。

图6.2.8 用施密特触发器实现波形变换

利用施密特触发器可以恢复波形[图6.2.9(a)(b)(c)]。

图6.2.9 用施密特触发器对脉冲整形

利用施密特触发器可以进行脉冲鉴幅[图6.2.10]。

图6.2.10 用施密特触发器鉴别脉冲幅度下载本文

显示全文
专题