视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
北师大版七年级上册数学期中试卷含答案
2025-09-27 23:46:40 责编:小OO
文档
北师大版七年级上册数学期中考试试题

评卷人得分
一、单选题
1.如果盈利70元记作+70元,那么亏本50元记作(  )

A.+50元 .-50元 .+20元 .-20元

2.用一个平面去截一个正方体,下列选项中画有阴影的部分是截面,哪个画法是错误的(  )

A. . . .

3.下列各式中,符合代数式书写规范的是( )

A. . .元 .

4.图是每个正方形上都有一个汉字的正方体的表面展开图,在此表面展开图中与“相”字相对的汉字是(  )

A.我 .能 .成 .功

5.下列各式:-(-5),-|-5|,-52,(-5)2,,计算结果为负数的有(   )

A.4个 .3个 .2个 .1个

6.若﹣2an+5b3 和 5a4bm 为同类项,则 nm 的值是( )

A.1 .﹣3 .﹣1 .3

7.下列说法中,正确的有(   )  

①的系数是 ;②﹣22ab2的次数是5;③多项式mn2+2mn﹣3n﹣1的次数是3;④a﹣b和都是整式.

A.1个 .2个 .3个 .4个

8.据《南国早报》报道:2016年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为( )

A.0.332×106 .3.32×105 .3.32×104 .33.2×104

9.已知三角形的周长是(3x2-2)cm,第一条边的长度是(5x-x2)cm,第二条边比第一条边长(3x2-10x+6)cm,则第三条边的长度是(  )

A.(2x2-8)cm .(x2+6)cm

C.(2x2-5x+6)cm .(x2+1)cm

10.图是由大小一样的小立方块摆成的立体图形的三视图,则摆成这个立体图形所需的小立方块的个数为(  )

A.8 .7 .6 .5

11.已知x2-3x的值为2,则2-3x2+9x的值为(  )

A.-6 .-4 .-2 .0

12.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )

A.20 .27 .35 .40

评卷人得分
二、填空题
13.比较大小:-(-0.3)___(填“=”“>”或“<”).

14.已知点P是数轴上表示﹣3的点,到P点4个单位长度的点表示的数是_____.

15.已知多项式-2m3n2-5中,含字母的项的系数为a,多项式的次数为b,常数项为c,则a+b+c=_____.

16.已知|a+3|+(b+4)2=0,则-b-a2=_____.

17.一组数:2,1,3,x,11,y,128,…,其中任意三个连续的数a,b,c满足c=a2-b,例如第三个数3=22-1.那么这组数中x,y分别为_____.

18.如图是一个“数值转换机”(箭头是指数进入转换机的路径,方框是对进入的数进行转换的转换机)。当小明输入3时,输出的结果为___________.

评卷人得分
三、解答题
19.如图,这是一个小正方体所搭几何体的俯视图,正方形中的数字表示在该位置小正方体的个数.请你画出它的主视图和左视图.

 

20.计算:

(1)12+(-13)+8+(-7); (2)×÷;   

(3)-36×; (4)-14-÷+[-2+(-2)2]-|2-4|.  

21. (1)化简:x2-(2x2-4y)+2(x2-y);

(2)先化简,再求值:3(2a2b-ab2)-2(5a2b-2ab2),其中a=2,b=-1.

22.某铁矿码头将运进铁矿石记为正,运出铁矿石记为负。某天的记录如下:(单位:t)+100,-80,+300,+160,-200,-180,+80,-160。

(1)当天铁矿石库存是增加了还是减少了?增加或减少了多少吨?

(2)码头用载重量为20t的大卡车运送铁矿石,每次运费100元,问这一天共需运费多少元?

23.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).

(1)若设购买x盒乒乓球,用含x的代数式表示两种优惠办法的付款钱数;

(2)当购买20盒、40盒乒乓球时,去哪家商店购买更合算?

24.观察下列由连续的正整数组成的等式:

第1层 1+2=3

第2层 4+5+6=7+8

第3层 9+10+11+12=13+14+15

第4层 16+17+18+19+20=21+22+23+24

……

(1)第6层等号右侧的第一个数是     ,第n层等号右侧的第一个数是     (用含n的式子表示,n是正整数); 

(2)数字2016排在第几层?请简要说明理由;

(3)求第99层右侧最后三个数字的和.

1.B

【解析】分析:盈利和亏本是具有相反意义的量.盈利记为“+”,则亏本记为“-”.

详解:亏本50元记作:-50元,故选B.

点睛:本题主要考查的是具有相反意义的量,属于基础题型.找出相反意义是关键.

2.A

【解析】

分析:正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.

详解:正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此A是错误的,故选A.

点睛:本题考查几何体的截面,关键要理解面与面相交得到线.应该熟记正方体的各种截取情况.

3.B

【解析】

【分析】

根据代数式的书写规则,数字应在字母前面,分数不能为假分数,不能出现除号,对各项的代数式进行判定,即可求出答案.

【详解】

解:A、字母a应写在8后面,故此选项错误;

B、符合书写要求,故此选项正确;

C、应该加小括号,故此选项错误;

D、不能出现带分数,故此选项错误;

故选:B.

【点睛】

此题主要考查了代数式的书写规则,关键是掌握代数式书写的标准规则要求.

4.C

【解析】

分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.

详解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“信”是相对面,

“能”与“功”是相对面,“相”与“成”是相对面.故选C.

点睛:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.

5.B

【解析】

分析:根据绝对值、平方的计算法则分别求出每一个值,从而得出答案.

详解:-(-5)=5;;,结果为负数的有3个,故选B.

点睛:本题主要考查的是有理数的计算法则,属于基础题型.理解计算法则是解题的关键.

6.C

【解析】

试题解析:∵和为同类项,

∴ 

 

∴ 

故选C.

点睛:所含字母相同并且相同字母的指数也相同的项叫做同类项.

7.C

【解析】

(1)因为的系数是,所以①正确;(2)因为的次数是3,所以②错误;(3)因为的次数是3,所以③正确;(4)因为是多项式,是单项式,而单项式和多项式统称为整式,所以④正确;即正确的说法有3个.

故选C.

8.B

【解析】

试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.将332000用科学记数法表示为:3.32×105.

考点:科学记数法—表示较大的数.

9.A

【解析】

分析:根据单项式的加减法计算法则得出第二条边的长度,然后根据三角形周长得出答案.

详解:第二条边长=,

第三条边长=,故选A.

点睛:本题主要考查的是多项式的加减法计算法则的应用,属于基础题型.在去括号时,如果括号前面为负号时,去掉括号后括号里面的每一项都要变号.

10.C

【解析】

分析:易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由正视图和左视图可得第二层正方体的个数,相加即可.

详解:综合主视图、俯视图、左视图,底层有5个正方体,第二层有1个正方体,所以搭成这个几何体所用的小立方块的个数是5+1=6个.故选C.

点睛:考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.

11.B

【解析】

分析:观察题中的两个代数式可以发现,,因此可以整体代入即可求出所要的结果.

详解:原式=2-3()=2-3×2=2-6=-4,故选B.

点睛:代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x2-3x的值,然后利用“整体代入法”求代数式的值.

12.B

【解析】

试题解析:第(1)个图形中面积为1的正方形有2个,

第(2)个图形中面积为1的图象有2+3=5个,

第(3)个图形中面积为1的正方形有2+3+4=9个,

…,

按此规律,

第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,

则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.

故选B.

考点:规律型:图形变化类.

13.<

【解析】

分析:根据有理数计算法则求出两个数,然后根据有理数的大小比较方法得出答案.

详解:∵-(-0.3)=0.3,, 0.3<,  ∴-(-0.3)<.

点睛:本题主要考查的是有理数的大小比较方法,属于基础题型.两个正数比较大小,绝对值大的数就大.

14.﹣7或1

【解析】试题解析:若在点P的左边,则这个数为﹣3﹣4=﹣7,

若在点P的右边,则这个数为﹣3+4=1,

综上所述,点表示的数为﹣7或1.

故答案为:﹣7或1.

15.-2

【解析】分析:根据多项式的性质得出a、b、c的值,从而得出答案.

详解:根据题意可得:a=-2,b=3+2=5,c=-5, ∴a+b+c=-2+5+(-5)=-2.

点睛:本题主要考查的是多项式的定义,属于基础题型.理解多项式中系数、次数和常数项的定义是解题的关键.

16.-5

【解析】

分析:首先根据几个非负数的和为零则每一个非负数都是零求出a和b的值,然后代入代数式得出答案.

详解:∵,  ∴a+3=0,b+4=0, 解得:a=-3,b=-4,

∴.

点睛:本题主要考查的是非负数的性质,属于基础题型.明确非负数的性质是解题的关键.

17.-2,-7

【解析】

分析:根据题目中给出的关系式分别求出x和y的值.

详解:.

点睛:本题主要考查的是有理数的计算问题,属于基础题型.理解题目的关系式是解决这个问题的关键.

18.

【解析】

【分析】

根据数进入转换机的路径以及要求一一判断即可解决问题;

【详解】

3-5=-2,-2的相反数为2,2的倒数为,输出的结果为,

故答案为.

【点睛】

本题考查有理数的混合运算,解题的关键是理解题意,灵活运用所学知识解决问题;

19.见解析

【解析】

【分析】

主视图从左往右3列正方体的个数依次为3,2,3;左视图从左往右2列正方体的个数依次为3,3;依此画出图形即可

【详解】

如图所示:

【点睛】

考查画几何体的三视图;用到的知识点为:主视图,左视图分别是从物体的正面,左面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.

20.(1)0 (2)-  (3)-25 (4)0

【解析】

分析:(1)、根据有理数的加减法计算法则即可得出答案;(2)、根据有理数的乘除法计算法则得出答案;(3)、根据乘法分配律进行简便计算;(4)、根据有理数的混合计算法则进行计算即可.

详解:(1)原式=(12+8)+[(-13)+(-7)]=20+(-20)=0;

(2)原式=××=-×=-;

(3)原式=-36×+36×-36×=-28+30-27=-25;

(4)原式=-1-×3+(-2+4)-2=-1-(-1)+2-2=-1+1+(2-2)=0.

点睛:本题主要考查的是有理数的混合计算法则,属于基础题型.理解计算法则是解决这个问题的关键.

21.(1)  x2+2y  .(2) 18.

【解析】分析:(1)、根据去括号的法则将括号去掉,然后进行合并同类项计算得出答案;(2)、首先根据去括号的法则将括号去掉,然后进行合并同类项,最后将a和b的值代入化简后的式子进行计算.

详解:(1)x2-(2x2-4y)+2(x2-y)=x2-2x2+4y+2x2-2y=x2+2y;

(2)3(2a2b-ab2)-2(5a2b-2ab2)=6a2b-3ab2-10a2b+4ab2=-4a2b+ab2;

当a=2,b=-1时,原式=-4×22×(-1)+2×(-1)2=18.

点睛:本题主要考查的是多项式的化简法则,属于基础题型.在去括号的时候,我们一定要注意如果括号前面为负号时,则去掉括号后括号里面的每一项都要变号.

22.(1)当天铁矿石库存增加了20;(2)这一天共需运费为63×100=6300(元).

【解析】试题分析:首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.

试题解析:(1)根据题意,运进铁矿石记为正,运出铁矿石记为负,则

(+100)+(-80)+(+300)+(+160)+(-200)+(-180)+(80)+(-160)=+20,即当天铁矿石库存增加了20。

(2)大卡车运送铁矿石的总重量为:|+100|+|-80|+|+300|+|+160|+|-200|+|-180|+|80|+|-160|=1260(吨),

若用载重量为20t的大卡车运送铁矿石,则所需要运送的次数为1260÷20=63,由于每次运费100元,

故这一天共需运费为63×100=6300(元).

23.(1)甲商场(25x+175)元,乙商场450+22.5x)元. (2)见解析

【解析】分析:(1)、根据甲、乙两家商店的优惠分别得出甲、乙两店的代数式;(2)、分别求出20盒和40盒时两家商店分别所需要付的钱,从而得出答案.

详解:(1)、当购买x盒乒乓球时,甲商场的付款钱数为100×5+25(x-5)=(25x+175)元,

乙商场的付款钱数为0.9(100×5+25x)=(450+22.5x)元;

(2)、当购买20盒乒乓球时,甲商场付款:5×100+25×(20-5)=875(元),

乙商场付款:(5×100+25×20)×0.9=900(元),

所以当购买20盒乒乓球时,到甲商场购买更合算;

当购买40盒乒乓球时,甲商场付款:5×100+25×(40-5)=1375(元),

乙商场付款:(5×100+25×40)×0.9=1350(元).

所以当购买40盒乒乓球时,到乙商场购买更合算.

点睛:本题主要考查的是代数式的表示方法以及应用,属于基础题型.理解优惠得出代数式是解决这个问题的关键.

24.(1)43;n2+n+1.  (2)44;(3)29994.

【解析】分析:(1)、由题意知,第6层等号左侧的第一个数是62=36、第n层等号左侧的第一个数是n2,分别加上序数加1即可得;(2)、根据第n层的第一个数是n2,由442<2016<452可得答案;(3)、由以上规律知第99层右侧最后三个数字为1002-1、1002-2、1002-3,相加可得.

详解:(1)43;n2+n+1.

(2)由题意知,第n层的第1个数是n2.

∵442=1936,452=2025,  又442<2016<452,  ∴2016排在第44层.

(3)(1002-1)+(1002-2)+(1002-3)=3×10000-6=29994.

答:第99层右侧最后三个数字之和为29994.

点睛:本题主要考查数字的变化规律,根据题意知第n层的第一个数是n2、第n层的右侧第一个数是n2+n+1是解题的关键.下载本文

显示全文
专题