班级: 姓名:
一、选择题(本大题共10小题,每题3分,共30分)
1.-2019的相反数是( )
A.2019 B.-2019 C. D.
2.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为( )
A.y=(x﹣4)2+7 B.y=(x+4)2+7
C.y=(x﹣4)2﹣25 D.y=(x+4)2﹣25
3.如果,那么代数式的值为( )
A. B. C. D.
4.已知一个多边形的内角和等于900º,则这个多边形是( )
A.五边形 B.六边形 C.七边形 D.八边形
5.如图,数轴上两点A,B表示的数互为相反数,则点B表示的( )
A.-6 B.6 C.0 D.无法确定
6.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是( )
A.c<﹣3 B.c<﹣2 C.c< D.c<1
7.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是( )
A.①②④ B.①②⑤ C.②③④ D.③④⑤
8.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于( )
A.40° B.50° C.60° D.80°
9.如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB∶S四边形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正确结论的个数是( )
A.1个 B.2个 C.3个 D.4个
10.如图,在四边形ABCD中,,,,.分别以点A,C为圆心,大于长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为( )
A. B.4 C.3 D.
二、填空题(本大题共6小题,每小题3分,共18分)
1.计算:=______________.
2.因式分解:=_______.
3.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.
4.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当为直角三角形时,BE的长为________.
5.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为__________.
6.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学计数法表示为___________.
三、解答题(本大题共6小题,共72分)
1.解分式方程:
2.先化简,再求值:,其中x满足x2-2x-2=0.
3.如图,抛物线过点,且与直线交于B、C两点,点B的坐标为.
(1)求抛物线的解析式;
(2)点D为抛物线上位于直线上方的一点,过点D作轴交直线于点E,点P为对称轴上一动点,当线段的长度最大时,求的最小值;
(3)设点M为抛物线的顶点,在y轴上是否存在点Q,使?若存在,求点Q的坐标;若不存在,请说明理由.
4.某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.
(1)求y关于x的函数解析式;
(2)若某用户二、三月份共用水40m3(二月份用水量不超过25m3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?
5.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.
(1)求条形图中被遮盖的数,并写出册数的中位数;
(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;
(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了 人.
61.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;
(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?
参
一、选择题(本大题共10小题,每题3分,共30分)
1、A
2、C
3、A
4、C
5、B
6、B
7、A
8、D
9、D
10、A
二、填空题(本大题共6小题,每小题3分,共18分)
1、.
2、
3、2
4、3或.
5、x≤1.
6、2.5×10-6
三、解答题(本大题共6小题,共72分)
1、
2、
3、(1)抛物线的解析式;(2)的最小值为;(3)点Q的坐标:、.
4、(1)(2)该用户二、三月份的用水量各是12m3、28m3
5、(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为;(3)3
6、(1)y=﹣5x2+800x﹣27500(50≤x≤100);(2)当x=80时,y最大值=4500;(3)70≤x≤90.下载本文