几何是初中数学中非常重要的内容,在数学的学习过程中,若能抓住基本图形,举一反三,定能引领学生领略到“一图一世界”的风采.下面先给大家介绍一种常见的数学模型---半角模型,通过对模型的理解和掌握,把模型的结论融会贯通,理解透彻,有助于理清思路、节省大量时间,遇到这一类题型,都是可以迎刃而解的.
一、模型类别
二、相关结论的运用
(一)等边三角形中120含60半角模型
条件:△ABC是等边三角形,∠CDB =120 ,∠EDF=60,BD=CD,旋转△BDE至△CDG
结论1:△FDE△FDG
结论2:EF=BE+CF
结论3: ∠DEB =∠DEF
典例精讲:
已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E、F.
(1)当∠MBN绕B点旋转到AE=CF时(如图1),试猜想AE,CF,EF之间存在怎样的数量关系?请将三条线段分别填入后面横线中: + = .(不需证明)
(2)当∠MBN绕B点旋转到AE≠CF(如图2)时,上述(1)中结论是否成立?请说明理由.
(3)当∠MBN绕B点旋转到AE≠CF(如图3)时,上述(1)中结论是否成立?若不成立,线段AE,CF,EF又有怎样的数量关系?请直接写出你的猜想,不需证明.
【思路点拨】
(1)证明△ABE≌△CBF且△BEF是等边三角形即可;
(2)根据“半角”模型1,先证△BAE≌△BCG,再根据“半角”模型1中的结论2得出△GBF≌△EBF,再根据“半角”模型1中的结论3即可;
(3)根据“半角”模型1,先证△BAH≌△BCF,再根据“手拉手”模型1中的结论2得出△EBF≌△EBH即可.
【详解】
解:(1)如图1,
△ABE和△CBF中,
,
∴△ABE≌△CBF(SAS),
∴∠CBF=∠EBA,BE=BF,
∵∠ABC=120°,∠EBF=60°,
∴△BEF是等边三角形,CF=,AE=,
∴EF=BE=BF=AE+CF;
(2)如图2,延长FC至G,使AE=CG,连接BG,
在△BAE和△BCG中,
,
∴△BAE≌△BCG(SAS),
∴∠ABE=∠CBG,BE=BG,
∵∠ABC=120°,∠EBF=60°,
∴∠ABE+∠CBF=60°,
∴∠CBG+∠CBF=60°,
∴∠GBF=∠EBF,
在△GBF和△EBF中,
,
∴△GBF≌△EBF(SAS),
∴EF=GF=CF+CG=CF+AE;
(3)不成立,但满足新的数量关系.
如图3,在AE上截取AH=CF,连接BH,
在△BAH和△BCF中,
,
∴△BAH≌△BCF(SAS),
∴BH=BF,∠ABH=∠CBF,
∵∠EBF=60°=∠FBC+∠CBE
∴∠ABH+∠CBE=60°,
∵∠ABC=120°,
∴∠HBE=60°=∠EBF,
在△EBF和△HBE中,
,
∴△EBF≌△EBH(SAS),
∴EF=EH,
∴AE=EH+AE=EF+CF.
【解题技法】本题典型的利用“半角”模型1,其基本思路是“旋转补短”,从而构造全等三角形.
实战演练:
1. 如图1,在菱形ABCD中,AC=2,BD=2,AC,BD相交于点O.
(1)求边AB的长;
(2)求∠BAC的度数;
(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF.判断△AEF是哪一种特殊三角形,并说明理由.
【答案】(1)2;(2) ;(3)见详解
【解析】
【分析】(1)由菱形的性质得出OA=1,OB=,根据勾股定理可得出答案;
(2)得出△ABC是等边三角形即可;
(3)由△ABC和△ACD是等边三角形,利用ASA可证得△ABE≌△ACF;可得AE=AF,根据有一个角是60°的等腰三角形是等边三角形推出即可.
【详解】解:(1)∵四边形ABCD是菱形,
∴AC⊥BD,
∴△AOB为直角三角形,且.
∴;
(2)∵四边形ABCD是菱形,
∴AB=BC,
由(1)得:AB=AC=BC=2,
∴△ABC为等边三角形,
∠BAC=60°;
(3)△AEF是等边三角形,
∵由(1)知,菱形ABCD的边长是2,AC=2,
∴△ABC和△ACD是等边三角形,
∴∠BAC=∠BAE+∠CAE=60°,
∵∠EAF=∠CAF+∠CAE=60°,
∴∠BAE=∠CAF,
在△ABE和△ACF中,
∴△ABE≌△ACF(ASA),
∴AE=AF,
∵∠EAF=60°,
∴△AEF是等边三角形.
【点睛】本题考查了菱形的性质,全等三角形的性质和判定,等边三角形的性质以及图形的旋转.解题的关键是熟练掌握菱形的性质.
2. 在平行四边形ABCD中,点E,F分别在边AD,AB上(均不与顶点重合),且∠BCD=120°,∠ECF=60°.
(1)如图1,若AB=AD,求证:;
(2)如图2,若AB=2AD,过点C作CM⊥AB于点M,求证:①AC⊥BC;②AE=2FM;
(3)如图3,若AB=3AD,试探究线段CE与线段CF的数量关系.
【答案】(1)证明见解析;(2)①证明见解析;②证明见解析;(3),证明见解析.
【解析】
【分析】(1)先根据菱形的判定与性质可得,再根据等边三角形的判定与性质可得,然后根据角的和差可得,最后根据三角形全等的判定定理即可得证;
(2)①先根据平行四边形的性质可得,,从而可得,再根据直角三角形的性质即可得证;
②先根据平行线的性质、直角三角形的性质可得,,再根据角的和差可得,从而可得,然后根据相似三角形的判定与性质可得,由此即可得证;
(3)如图(见解析),先根据平行四边形的性质可得,,,再根据等边三角形的判定与性质可得,,从而可得,然后根据角的和差可得,最后根据相似三角形的判定与性质可得,由此即可得出答案.
【详解】(1)四边形ABCD是平行四边形,,
四边形ABCD是菱形,
,
,
是等边三角形,
,
,
,
又,即,
,
在和中,,
;
(2)①四边形ABCD是平行四边形,,
,,,
,
,
,即,
在中,,
是直角三角形,且,
即;
②,
,
在中,,即,
,
,
,
,
,
,
在和中,,
,
,
即;
(3),证明如下:
如图,在AB上取一点G,使得,连接CG,
四边形ABCD是平行四边形,,
,,,
是等边三角形,
,,
,
,即,
,
,
,即,
点G一定在点F的左侧,
,
,
在和中,,
,
,
即.
【点睛】本题考查了三角形全等的判定定理、菱形的判定与性质、等边三角形的判定与性质、相似三角形的判定与性质等知识点,较难的是题(3),通过作辅助线,构造相似三角形是解题关键.
(二)等腰直角三角形中90含45半角模型
条件:△ABC是等腰直角三角形,∠CAB =90 ,AB=AC,∠DAE=45,旋转△BDE至△CDG(△BDE沿AD翻折到△ADF)
结论1:△ADE△AFE(△ACE△AFE)
结论2: DE2=BD2+EC2
结论3:C∆CEF=BC(C∆DEF=BC)
典例精讲:
已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径的长等于CA的扇形CEF绕点C旋转,且直线CE,CF分别与直线AB交于点M,N.
(1)当扇形CEF绕点C在∠ACB的内部旋转时,如图①,求证:MN2=AM2+BN2;
思路点拨:考虑MN2=AM2+BN2符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM沿直线CE对折,得△DCM,连DN,只需证DN=BN,∠MDN=90°就可以了.
请你完成证明过程:
(2)当扇形CEF绕点C旋转至图②的位置时,关系式MN2=AM2+BN2是否仍然成立?若成立,请证明;若不成立,请说明理由.
【思路点拨】
(1)将△ACM沿直线CE对折,得△DCM,连DN,根据“半角”模型2,证明出△CDN≌△CBN,再根据“半角”模型2的结论2即可;
(2)将△ACM沿直线CE对折,得△GCM,连GN,根据“半角”模型2,证明△CGN≌△CBN,再根据“半角”模型2的结论2即可;
【详解】
(1)证明:
将△ACM沿直线CE对折,得△DCM,连DN,
则△DCM≌△ACM.
有CD=CA,DM=AM,∠DCM=∠ACM,∠CDM=∠A.
又由CA=CB,得 CD=CB.
由∠DCN=∠ECF﹣∠DCM=45°﹣∠DCM,
∠BCN=∠ACB﹣∠ECF﹣∠ACM=90°﹣45°﹣∠ACM,
得∠DCN=∠BCN.
又CN=CN,
∴△CDN≌△CBN.
∴DN=BN,∠CDN=∠B.
∴∠MDN=∠CDM+∠CDN=∠A+∠B=90°.
∴在Rt△MDN中,由勾股定理,
得MN2=DM2+DN2.即MN2=AM2+BN2.
(2)关系式MN2=AM2+BN2仍然成立.
证明:将△ACM沿直线CE对折,得△GCM,连GN,
则△GCM≌△ACM.
有CG=CA,GM=AM,
∠GCM=∠ACM,∠CGM=∠CAM.
又由CA=CB,得 CG=CB.
由∠GCN=∠GCM+∠ECF=∠GCM+45°,
∠BCN=∠ACB﹣∠ACN=90°﹣(∠ECF﹣∠ACM)=45°+∠ACM.
得∠GCN=∠BCN.
又CN=CN,
∴△CGN≌△CBN.
有GN=BN,∠CGN=∠B=45°,∠CGM=∠CAM=180°﹣∠CAB=135°,
∴∠MGN=∠CGM﹣∠CGN=135°﹣45°=90°.
∴在Rt△MGN中,由勾股定理,
得MN2=GM2+GN2.即MN2=AM2+BN2.
【解题技法】利用“半角”模型2,正确作出辅助线,构造直角三角形是解题的关键.
实战演练:
3. 在等腰中,CA=CB,点D,E在射线AB上,不与A,B重合(D在E的左边),且∠DCE=∠ACB.
(1)如图1,若∠ACB=90°,将沿CD翻折,点A与M重合,求证:;
(2)如图2,若∠ACB=120°,且以AD、DE、EB为边的三角形是直角三角形,求的值;
(3)∠ACB=120°,点D在射线AB上运动,AC=3,则AD的取值范围为 .
【答案】(1)证明见解析;(2)或2;(3).
【解析】
【分析】(1)先根据翻折的性质可得,从而可得,再根据角的和差可得,然后根据三角形全等的判定定理即可得证;
(2)如图(见解析),先根据等腰三角形的性质可得,再根据翻折的性质可得,然后根据三角形全等的判定定理与性质可得,从而可得,最后根据直角三角形的定义分和两种情况,分别利用余弦三角函数即可得;
(3)先判断出AD取得最大值时点D的位置,再利用余弦三角函数求解即可得.
【详解】(1)由翻折的性质得:,
,
,
,
,,
,
在和中,,
;
(2)如图,将沿CD翻折,点A与F重合,连接EF,
,
,
由翻折的性质得:,
同(1)的方法可证:,
,
,
以AD、DE、EB为边的三角形是直角三角形,
以DF、DE、EF为边的三角形是直角三角形,即是直角三角形,
因此分以下两种情况:
①当时,
在中,,
则,
②当时,
在中,,
则,
即,
综上,的值为或2;
(3),
,
如图,当点D在射线AB上运动至的位置时,
在中,,即,
解得,
,
,
,
,
,
,
要使点E在射线AB上,且点D在E的左边,则,
即AD的取值范围为,
故答案为:.
【点睛】本题考查了翻折的性质、三角形全等的判定定理与性质、等腰三角形的性质、余弦三角函数等知识点,较难的是题(3),正确判断出AD取得最大值时点D的位置是解题关键.
(三)正方形中90含45半角模型
条件:正方形ABCD中,∠MAN =45 ,旋转△ABF至△AND;
结论1:△AFM△AMN
结论2: MN=BM+DN(MN=DN-BM)
结论3:C∆MCN=2AB;
结论4: ()
典例精讲:
(1)(发现证明)
如图1,在正方形ABCD中,点E,F分别是BC,CD边上的动点,且∠EAF=45°,求证:EF=DF+BE.
小明发现,当把△ABE绕点A顺时针旋转90°至△ADG,使AB与AD重合时能够证明,请你给出证明过程.
(2)(类比引申)①如图2,在正方形ABCD中,如果点E,F分别是CB,DC延长线上的动点,且∠EAF=45°,则(1)中的结论还成立吗?请写出证明过程.
②如图3,如果点E,F分别是BC,CD延长线上的动点,且∠EAF=45°,则EF,BE,DF之间的数量关系是 (不要求证明)
(3)(联想拓展)如图1,若正方形ABCD的边长为6,AE=3,求AF的长.
【思路点拨】
(1)(发现证明)根据“半角”模型3,证明出△EAF≌△GAF,再根据“半角”模型3的结论2即可得证;
(2)(类比引申)①根据“半角”模型3,证明出△EAF≌△GAF,再根据“半角”模型3的结论2即可得证;
②根据“半角”模型3,证明△AFE≌△ANE,再根据“半角”模型3的结论2即可得证;
(3)(联想拓展)
求出DG=2,设DF=x,则根据“半角”模型3的结论2得出EF=DG=x+3,CF=6﹣x,在Rt△EFC中,得出关于x的方程,解出x则可得解.
【详解】
(1)(发现证明)
证明:把△ABE绕点A顺时针旋转90°至△ADG,如图1,
∴∠BAE=∠DAG,AE=AG,
∵∠EAF=45°,
∴∠BAE+∠FAD=45°,
∴∠DAG+∠FAD=45°,
∴∠EAF=∠FAG,
∵AF=AF,
∴△EAF≌△GAF(SAS),
∴EF=FG=DF+DG,
∴EF=DF+BE;
(2)(类比引申)
①不成立,结论:EF=DF﹣BE;
证明:如图2,将△ABE绕点A顺时针旋转90°至△ADM,
∴∠EAB=∠MAD,AE=AM,∠EAM=90°,BE=DM,
∴∠FAM=45°=∠EAF,
∵AF=AF,
∴△EAF≌△MAF(SAS),
∴EF=FM=DF﹣DM=DF﹣BE;
②如图3,将△ADF绕点A逆时针旋转90°至△ABN,
∴AN=AF,∠NAF=90°,
∵∠EAF=45°,
∴∠NAE=45°,
∴∠NAE=∠FAE,
∵AE=AE,
∴△AFE≌△ANE(SAS),
∴EF=EN,
∴BE=BN+NE=DF+EF.
即BE=EF+DF.
故答案为:BE=EF+DF.
(3)(联想拓展)
解:由(1)可知AE=AG=3,
∵正方形ABCD的边长为6,
∴DC=BC=AD=6,
∴
∴BE=DG=3,
∴CE=BC﹣BE=6﹣3=3,
设DF=x,则EF=DG=x+3,CF=6﹣x,
在Rt△EFC中,∵CF2+CE2=EF2,
∴(6﹣x)2+32=(x+3)2,
解得:x=2.
∴DF=2,
∴AF=
【解题技法】“半角”模型3,常与旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,将分散的条件集中起来,将隐秘的关系显现出来.
实战演练:
4. 思维探索:
在正方形ABCD中,AB=4,∠EAF的两边分别交射线CB,DC于点E,F,∠EAF=45°.
(1)如图1,当点E,F分别在线段BC,CD上时,△CEF的周长是 ;
(2)如图2,当点E,F分别在CB,DC的延长线上,CF=2时,求△CEF的周长;
拓展提升:
如图3,在Rt△ABC中,∠ACB=90°,CA=CB,过点B作BD⊥BC,连接AD,在BC的延长线上取一点E,使∠EDA=30°,连接AE,当BD=2,∠EAD=45°时,请直接写出线段CE的长度.
【答案】思维探索:(1)8;(2)12;拓展提升:CE=﹣1.
【解析】
【分析】思维探索:(1)利用旋转的性质,证明△AGE≌△AFE即可;
(2)把△ABE绕点A逆时针旋转90°到AD,交CD于点G,证明△AEF≌△AGF即可求得EF=DF﹣BE;
拓展提升:如图3,过A作AG⊥BD交BD的延长线于G,推出四边形ACBG是矩形,得到矩形ACBG是正方形,根据正方形的性质得到AC=AG,∠CAG=90°,在BG上截取GF=CE,根据全等三角形的性质得到AE=AF,∠EAC=∠FAG,∠ADF=∠ADE=30°,解直角三角形得到DE=DF=4,BE=2,设CE=x,则GF=CE=x,BC=BG=2﹣x,根据线段的和差即可得到结论.
【详解】思维探索:
(1)如图1,将△ADF绕点A顺时针旋转90°得到△ABG,
∴GB=DF,AF=AG,∠BAG=∠DAF,
∵四边形ABCD为正方形,
∴∠BAD=90°,
∵∠EAF=45°,
∴∠BAE+∠DAF=45°,
∴∠BAG+∠BAE=45°=∠EAF,
在△AGE和△AFE中
∴△AGE≌△AFE(SAS),
∴GE=EF,
∵GE=GB+BE=BE+DF,
∴EF=BE+DF,
∴△CEF的周长=CE+CF+EF=CE+BE+DF+CF=BC+CD=8,
故答案为:8;
(2)如,2,把△ABE绕点A逆时针旋转90°到AD,交CD于点G,
同(1)可证得△AEF≌△AGF,
∴EF=GF,且DG=BE,
∴EF=DF﹣DG=DF﹣BE,
∴△CEF的周长=CE+CF+EF=CE+CF+DF﹣BE=BC+DF+CF=4+4+2+2=12;
拓展提升:如图3,过A作AG⊥BD交BD的延长线于G,
∵BD⊥BC,∠ACB=90°,
∴∠ACB=∠CBG=∠G=90°,
∴四边形ACBG是矩形,
∵AC=BC,
∴矩形ACBG是正方形,
∴AC=AG,∠CAG=90°,
在BG上截取GF=CE,
∴△AEC≌△AGF(SAS),
∴AE=AF,∠EAC=∠FAG,
∵∠EAD=∠BAC=∠GAB=45°,
∴∠DAF=∠DAE=45°,
∵AD=AD,
∴△ADE≌△ADF(SAS),
∴∠ADF=∠ADE=30°,
∴∠BDE=60°,
∵∠DBE=90°,BD=2,
∴DE=DF=4,BE=2,
设CE=x,则GF=CE=x,BC=BG=2﹣x,
∴DG=2+2﹣x,
∴DG﹣FG=DF,
即2+2﹣x﹣x=4,
∴x=﹣1,
∴CE=﹣1.
【点睛】本题以正方形为背景,结合旋转,三角形全等,解直角三角形进行综合性考查,熟知常见的全等模型,旋转性质,三角形的判定及性质,正方形,矩形的性质是解题的关键.
5. (1)如图,在正方形 ABCD 中,∠FAG=45°,请直接写出 DG,BF 与FG 的数量关系,不需要证明.
(2)如图,在 Rt△ABC 中,∠BAC=90°,AB=AC,E,F 分别是 BC 上两点,∠EAF=45°,
①写出 BE,CF,EF 之间的数量关系,并证明.
②若将(2)中的△AEF 绕点 A 旋转至如图所示的位置,上述结论是否仍然成立? 若不成立,直接写出新的结论 ,无需证明.
(3)如图,△AEF 中∠EAF=45°,AG⊥EF 于 G,且GF=2,GE=3,则 = .
【答案】(1)FG=BF+DG;(2)①EF2=BE2+FC2,理由见解析;②仍然成立;(3)15
【解析】
【分析】(1)把△AGD绕点A逆时针旋转90°至△ABP,可使AD与AB重合,再证明△AFG≌△AFP进而得到PF=FG,即可得FG=BF+DG;
(2)①根据△AFC绕点A顺时针旋转90°得到△AGB,根据旋转的性质,可知△ACF≌△ABG得到BG=FC,AG=AF,∠C=∠ABG,∠FAC=∠GAB,根据Rt△ABC中的AB=AC得到∠GBE=90°,所以GB2+BE2=GE2,证△AGE≌△AFE,利用EF=EG得到EF2=BE2+FC2;
②将△ABE绕点A逆时针旋转使得AB与AD重合,点E的对应点是G,同上的方法证得GC2+CF2=FG2,再设法利用SAS证得△AFG≌△AFE即可求解;
(3)将△AEG沿AE对折成△AEB,将△AFG沿AF对折成△AFD,延长BE、DF相交于C,构成正方形ABCD,在Rt△EFC中,利用勾股定理求得正方形的边长,即可求得AG的长,从而求得答案.
【详解】(1)∵四边形ABCD为正方形,
∴AB=AD,∠ADC=∠ABC=90°,
∴把△AGD绕点A逆时针旋转90°至△ABP,使AD与AB重合,
∴∠BAP=∠DAG,AP= AG,
∵∠BAD=90°,∠FAG=45°,
∴∠BAF+∠DAG=45°,
∴∠PAF=∠FAG=45°,
∵∠ADC=∠ABC=90°,
∴∠FBP=180°,点F、B、P共线,
在△AFG和△AFP中,
,
∴△AFG≌△AFP(SAS),
∴PF=FG,
即:FG=BF+DG;
(2)①FC2+BE2=EF2,证明如下:
∵AB=AC,∠BAC=90°,
∴∠C=∠ABC=45°,
将△AFC绕点A顺时针旋转90°得到△AGB,
∴△ACF≌△ABG,
∴BG=FC,AG=AF,∠C=∠ABG=45°,∠FAC=∠GAB,
∴∠GBE=∠ABG +∠ABC =90°,
∴GB2+BE2=GE2,
又∵∠EAF=45°,
∴∠BAE+∠FAC=45°,
∴∠GAB+∠BAE=45°,
即∠GAE=45°,
在△AGE和△AFE中,
,
∴△AGE≌△AFE(SAS),
∴GE=EF,
∴FC2+BE2=EF2;
②仍然成立,理由如下:
如图,将△ABE绕点A逆时针旋转使得AB与AD重合,点E的对应点为点G,
∴△ACG≌△ABE,
∴CG=BE,AG=AE,∠ACG=∠ABE=45°,∠BAE=∠CAG,
∴∠GCB=∠ACB +∠ACG =90°,即∠GCF=90°,
∴GC2+CF2=FG2,
∵∠BAE+∠EAC=∠BAC=90°,
∴∠CAG+∠EAC=90°,
又∵∠EAF=45°,
∴∠GAF=90°-∠EAF=45°,
∴∠GAF=∠EAF=45°,
在△AFG和△AFE中,
,
∴△AFG≌△AFE(SAS),
∴GF=EF,
∴FC2+BE2=EF2;
(3)将△AEG沿AE对折成△AEB,将△AFG沿AF对折成△AFD,延长BE、DF相交于C,
∴△AEG△AEB,△AFG△AFD,
∴AB=AG=AD,BE=EG=3,DF=FG=2,∠EAG=∠EAB,∠FAG=∠FAD,∠B=∠D=90°,
∵∠EAF=45°,
∴∠EAB+∠FAD=∠EAG+∠FAG=∠EAF=45°,
∴∠BAD=90°,
∴四边形ABCD为正方形,
设AG =,则AB=BC=CD=,
在Rt△EFC中,EF=3+2=5,EC=BC-BE=,FC=CD-DF=,
∴,
故,
解得:(舍去),,
∴AG=6,
∴.
故答案为:15.
【点睛】本题主要考查了旋转的性质,折叠的性质,正方形的性质,全等三角形的判定与性质,勾股定理,三角形的面积等知识,同时考查了学生的阅读理解能力与知识的迁移能力,综合性较强,难度适中.
(四)等边三角形中60含30半角模型
条件:△ABC是等边三角形,∠DAE =30 ,旋转△ABD至△ACF;
结论1:△ADE△AFE
结论2:∠ECF =120
结论3:C∆ECF=AB;
典例精讲:
转前后的线段之间、角之间的关系进行了探究.
(一)尝试探究
如图1所示,在四边形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,点E、F分别在线段BC、CD上,∠EAF=30°,连接EF.
(1)如图2所示,将△ABE绕点A逆时针旋转60°后得到△A′B′E′(A′B′与AD重合),请直接写出∠E′AF= 度,线段BE、EF、FD之间的数量关系为 .
(2)如图3,当点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线段BE、EF、FD之间的数量关系,并说明理由.
(二)拓展延伸
如图4,在等边△ABC中,E、F是边BC上的两点,∠EAF=30°,BE=1,将△ABE绕点A逆时针旋转60°得到△A′B′E′(A′B′与AC重合),连接EE′,AF与EE′交于点N,过点A作AM⊥BC于点M,连接MN,求线段MN的长度.
【思路点拨】
(一)(1)(发现证明)根据“半角”模型4,证明出△AEF≌△AE′F,进而根据线段的和差关系得出结论;
(2)先在BE上截取BG=DF,连接AG,根据“半角”模型4,判定△GAE≌△FAE,根据线段的和差关系得出结论;
(二)先根据“半角”模型4,判定△AEE′是等边三角形,进而得到和∠BAE=∠MAN,最后判定△BAE∽△MAN,并根据相似三角形对应边成比例,列出比例式求得MN的长.
解:(一)(1)将△ABE绕点A逆时针旋转60°后得到△A′B′E′,
则∠BAE=∠DAE',BE=DE′,AE=AE′,
∵∠BAD=60°,∠EAF=30°,
∴∠BAE+∠DAF=30°,
∴∠DAE'+∠DAF=30°,即∠FAE′=30°
∴∠EAF=∠FAE′,
在△AEF和△AE′F中,,
∴△AEF≌△AE′F(SAS),
∴EF=E′F,即EF=DF+DE′,
∴EF=DF+BE,即线段BE、EF、FD之间的数量关系为BE+DF=EF,
故答案为:30,BE+DF=EF;
(2)如图3,BE上截取BG=DF,连接AG,
在△ABG和△ADF中,,
∴△ABG≌△ADF(SAS),
∴∠BAG=∠DAF,且AG=AF,
∵∠DAF+∠DAE=30°,
∴∠BAG+∠DAE=30°,
∵∠BAD=60°,
∴∠GAE=60°﹣30°=30°,
∴∠GAE=∠FAE,
在△GAE和△FAE中,,
∴△GAE≌△FAE(SAS),
∴GE=FE,
又∵BE﹣BG=GE,BG=DF,
∴BE﹣DF=EF,
即线段BE、EF、FD之间的数量关系为BE﹣DF=EF;
(二)如图4,将△ABE绕点A逆时针旋转60°得到△A′B′E′,则
AE=AE′,∠EAE′=60°,
∴△AEE′是等边三角形,
又∵∠EAF=30°,
∴AN平分∠EAE',
∴AN⊥EE′,
∴RtANE中,,
∵在等边△ABC中,AM⊥BC,
∴∠BAM=30°,
∴,且∠BAE+∠EAM=30°,
∴,
又∵∠MAN+∠EAM=30°,
∴∠BAE=∠MAN,
∴△BAE∽△MAN,
∴,即,
∴MN=.
【解题技法】根据“半角”模型,对图形进行分解、组合,抓住图形旋转前后的对应边相等,一般解题方法为作辅助线构造全等三角形或相似三角形.
实战演练:
6. (1)问题背景:
如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC,CD上的点且∠EAF=60°,探究图中线段BE、EF、FD之间的数量关系.
小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明,再证明,可得出结论,他的结论应是 ;
(2)探索延伸:
如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论 仍然成立(填“是”或“否”);
(3)结论应用:
如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以45海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以60海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两地分别到达E、F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.
(4)能力提高:
如图4,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,则MN的长为 .
【答案】(1);(2)是;(3)210海里;(4)
【解析】
【分析】(1)先根据三角形全等的判定定理与性质可得,再根据角的和差可得,然后根据三角形全等的判定定理与性质可得,最后根据线段的和差、等量代换即可得;
(2)如图(见解析),先根据三角形全等的判定定理与性质可得,再根据角的和差可得,然后根据三角形全等的判定定理与性质可得,最后根据线段的和差、等量代换即可得;
(3)先根据方位角的定义、角的和差分别求出,从而可得,再根据航行速度与时间分别求出海里,海里,然后利用题(2)的结论即可得;
(4)过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN,根据(2)中的结论计算即可.
【详解】(1)在和中,
,
即
在和中,
故答案为:;
(2)是,证明如下:
如图,延长CD至点M,使得
,
在和中,
,即
在和中,
故答案为:是;
(3)如图,延长AE、BF,相交于点C,连接EF,过点B作轴于点N
由题意得:
,
舰艇甲从A处向正东方向以45海里/小时的速度航行2小时至E处
轴,(海里)
舰艇乙从B处沿北偏东的方向以60海里/小时的速度航行2小时至F处
,(海里)
则由(2)的结论可得:(海里)
故此时两舰艇之间的距离为210海里;
(4)过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN,
由(2)可知,CE=BM=1, NE=MN,
NE= .
∴ ,
故答案为:
【点睛】本题考查了全等三角形的判定和性质、勾股定理的运用、等腰直角三角形的性质,题目的综合性较强,难度较大,解题的关键是正确的作出辅助线构造全等三角形,解答时,注意类比思想的应用.下载本文