视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
【实例93】单片机浮点数运算实现
2025-09-29 08:48:37 责编:小OO
文档
【实例93】单片机浮点数运算实现

(1)浮点数显示子函数。

/********************************

函数名称: void DispF(float f)

功能 :用科学记数法显示浮点数,在float全范围内精确显示,超出范围给出提示。

说明 :浮点数表示范围为+-1.175494E-38到+-3.402823E+38

入口参数:f为要显示的浮点数

返回值 :无

********************************/

void DispF(float f)   

{

       float  tf, b;

       unsigned long w, tw;

       char i, j;

if(f<0)

        {

         PrintChar(’-’);

         f=-1.0*f;

        }

if(f<1.175494E-38)

        {

          printf("?.");   //太小了,超出了最小范围。

          return;

        }

if(f>1E35) //f>10^35

        {

         tf=f/1E35;

         b=1000.0;

for(i=0,j=38;i<4;i++,j--)

          {

if(tf/b<1)

             b=b/10.0;

           else 

break;

           w=f/(1E29*b);      //1E35*b/1E6

           PrintW(w,j);

          }

}

else if(f>1E28)

        {

         tf=f/1E28;

         b=1E7;

for(i=0,j=35;i<8;i++,j--)

           {

if(tf/b<1)

              b=b/10.0;

            else

    break;

            w=f/(1E22*b);     //1E28*b/1E6

            PrintW(w,j);

           }

}

else if(f>1E21)

         {

          tf=f/1E21;

          b=1E7;

for(i=0,j=28;i<8;i++,j--)

          {

if(tf/b<1)

 b=b/10.0;

           else

 break;

           w=f/(1E15*b);      //1E21*b/1E6

           PrintW(w,j);

          }

}

else if(f>1E14)

         {

          tf=f/1E14;

          b=1E7;

for(i=0,j=21;i<8;i++,j--)

          {

if(tf/b<1)

             b=b/10.0;

           else 

break;

           w=f/(1E8*b);       //1E14*b/1E6

           PrintW(w,j);

           }

          }

else if(f>1E7)

         {

          tf=f/1E7;

          b=1E7;

for(i=0,j=14;i<8;i++,j--)

            {

if(tf/b<1)

b=b/10.0;

             else 

break;

             w=f/(10.0*b);      //1E28*b/1E6

             PrintW(w,j);

            }

}

else if(f>1)

         {

           tf=f;

           b=1E7;

for(i=0,j=7;i<8;i++,j--)

if(tf/b<1)

             b=b/10.0;

           else 

break;

           w=f/(1E-6*b);       //1E0*b/1E6

           PrintW(w,j);

          }

else if(f>1E-7)

         {

          tf=f*1E7;           //10^-7      

          b=1E7;

for(i=0,j=0;i<8;i++,j--)

            {

if(tf/b<1)

b=b/10.0;

             else 

break;

             w=f*(1E13/b);     //(1E7/b)*1E6

             PrintW(w,j);

            }

}

else if(f>1E-14)

          {

            tf=f*1E14;        //10^-14        

            b=1E7;

for(i=0,j=-7;i<8;i++,j--)

            {

if(tf/b<1)

 b=b/10.0;

             else 

break;

             w=f*(1E20/b);    //(1E14/b)*1E6

             PrintW(w,j);

            }

}

else if(f>1E-21)

          {

            tf=f*1E21;       //10^-21

            b=1E7;

for(i=0,j=-14;i<8;i++,j--)

              {

if(tf/b<1)

 b=b/10.0;

               else 

break;

               w=f*(1E27/b);    //(1E21/b)*1E6

               PrintW(w,j);

               }

            }

else if(f>1E-28)

            {

              tf=f*1E28;            //10^-28

              b=1E7;

for(i=0,j=-21;i<8;i++,j--)

                {

if(tf/b<1)

b=b/10.0;

                 else

 break;

                 w=f*(1E34/b);      //(1E28/b)*1E6

                 PrintW(w,j);

               }

}

else if(f>1E-35)

            {

              tf=f*1E35;             //10^-35

              b=1E7;

for(i=0,j=-28;i<8;i++,j--)

                {

if(tf/b<1)

 b=b/10.0;

                  else 

break;

                  w=f*(1E35/b)*1E6;   //(1E35/b)*1E6

                  PrintW(w,j);

                }

              }

         else

           {

             tf=f*1E38;  //f<=10^-35

             b=1000.0;

for(i=0,j=-35;i<4;i++,j--)

              {

if(tf/b<1)

b=b/10.0;

                else 

break;

                w=f*(1E38/b)*1E6;      //(1E38/b)*1E6

                PrintW(w,j);

               }

             }

}

(2)显示十进制尾数和阶的子函数。

/********************************

函数名称: void PrintW(unsigned long w,char j)

功能 :科学记数法,显示十进制尾数和阶码

入口参数:w为尾数,j为阶码

返回值 :无

********************************/

void PrintW(unsigned long w,char j) 

{

         char i;

         unsigned long tw,b;

if(j<-38)                //太小了,超出最小表数范围。

           {

            printf("?.");

            return;

            }           

if(j>38)                   //此算法不会出现j>38的情况

          {

            printf("*.******");

            return;

          }

tw=w/1000000;

        PrintChar(tw+’0’);

        PrintChar(’-’);

        w=w-tw*1000000;

        b=100000;

for(i=0;i<6;i++)

          {

           tw=w/b;

           PrintChar(tw+’0’);

           w=w-tw*b;

           b=b/10;

           }

       printf("E%d",(int)j);

}下载本文

显示全文
专题